解:(1)若x<0,則-x>0,
∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(x)=f(-x)=
(x<0)(3分)
(2)當(dāng)x≥0時(shí),f'(x)=
.(6分)
顯然當(dāng)0<x<1時(shí),f'(x)<0;
當(dāng)x>1時(shí),f'(x)>0,又f(x)在x=0和x=1處連續(xù),
∴函數(shù)f(x)在[0,1]上為減函數(shù),在[1,+∞)上為增函數(shù).(8分)
(3)證明:∵函數(shù)f(x)在[1,+∞)上為增函數(shù),且f(x)<0,
∴當(dāng)x≥2時(shí),有0>f(x)≥f(2)=-2.(10分)
又當(dāng)x
1,x
2≥2時(shí),得-2<f(x
1)<0且-2<f(x
2)<0,即0<-f(x
2)<2
∴-2<f(x
1)-f(x
2)<2即得:|f(x
1)-f(x
2)|<2.(12分)
分析:(1)直接設(shè)x<0,則-x>0,再利用f(x)=f(-x)即可得x<0時(shí)f(x)的解析式;
(2)先求出其導(dǎo)函數(shù),再利用導(dǎo)函數(shù)值的正負(fù)和原函數(shù)單調(diào)性之間的關(guān)系即可求出函數(shù)f(x)(x≥0)的單調(diào)區(qū)間;
(3)利用(2)的結(jié)論得當(dāng)x≥2時(shí),有0>f(x)≥f(2)=-2;所以有當(dāng)x
1,x
2≥2時(shí),得-2<f(x
1)<0且-2<f(x
2)<0,即0<-f(x
2)<2,整理后即可得出結(jié)論.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性與單調(diào)性的綜合以及利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,是對(duì)函數(shù)性質(zhì)的綜合考查,屬于中檔題.