如圖,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)若M為PB的中點,試求異面直線AN和BC所成的角的余弦值.
(Ⅲ)試問:在側(cè)棱PB上是否存在一點Q,使截面AQC把幾何體分成的兩部分的體積之比VPDCQ:VQACB=7:2?若存在,請求PQ的長;若不存在,請說明理由.

【答案】分析:(Ⅰ)由CD⊥AD和平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,根據(jù)面面垂直的性質(zhì)定理證明;
(Ⅱ)如圖,把四棱錐P-ABCD補成一個長方體,則有AM∥DF,DG∥CB,可得到∠FDG就是異面直線AM和BC所成的角,再在△GBE中,求得GE,在△GEF中,求得FG,在△FDG中,求得DG,利用由余弦定理求解.
(Ⅲ)假設在側(cè)棱PB上存在一點Q,滿足條件VPDCQA:VQACB=7:2,轉(zhuǎn)化為,再由相似性求解.
解答:證明:(Ⅰ)依題意知PA=1,PD=
∴AD⊥AB,
又CD∥AB
∴CD⊥AD
又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
CD⊥平面PAD(4分)

(Ⅱ)如圖,把四棱錐P-ABCD補成一個長方體,
其中C,G分別為所在棱的中點,則易得AM∥DF,DG∥CB,
所以∠FDG就是異面直線AM和BC所成的角(6分)
連接FG,在△GBE中,GE=
在△GEF中,F(xiàn)G=
在△FDG中,DG=GE=
由余弦定理可得:
cos∠FDG=(8分)
所以異面直線AM和BC所成的角的余弦值為.(9分)

(Ⅲ)解:假設在側(cè)棱PB上存在一點Q,滿足條件
∵VPDCQA:VQACB=7:2
(11分)
又由∠PAD=∠DAB=90°知PA⊥平面ABCD,又
,S△ABC=1.
設Q到平面ABCD的距離為h,則

(12分)
又∵,∴
故PQ=(14分)
點評:本題主要考查面面垂直的性質(zhì)定理,用余弦定理求解異面直線所成角和通過相似性來求解線段的長度等,培養(yǎng)學生轉(zhuǎn)化化歸的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=
2
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
精英家教網(wǎng)
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)若M是側(cè)棱PB中點,截面AMC把幾何體分成的兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=
2
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)若M為PB的中點,試求異面直線AN和BC所成的角的余弦值.
(Ⅲ)試問:在側(cè)棱PB上是否存在一點Q,使截面AQC把幾何體分成的兩部分的體積之比VPDCQA:VQACB=7:2?若存在,請求PQ的長;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=
2
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
精英家教網(wǎng)
(1)求證:平面PAD⊥平面PCD;
(2)試在PB上找一點M,使截面AMC把幾何體分成兩部分,且VM-ACB=
1
3
VP-ABCD
;
(3)在(2)的條件下,判斷AM是否平行于平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在等腰梯形PDCB中,PB=3,DC=1,PD=BC=
2
,AD⊥PB,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
精英家教網(wǎng)
(1)求證:PA⊥平面ABCD;
(2)求二面角P-DC-B的大;
(3)若M是側(cè)棱PB中點,求直線CM與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州三模)如圖,在等腰梯形PDCB中,PB∥CD,PB=3,DC=1,PD=BC=
2
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.
(1)求證:平面PAD⊥平面PCD.
(2)在線段PB上是否存在一點M,使截面AMC把幾何體分成的兩部分的體積之比為VPDCMA:V M-ACB=2:1,若存在,確定點M的位置;若不存在,說明理由.
(3)在(2)的條件下,判斷AM是否平行于平面PCD.

查看答案和解析>>

同步練習冊答案