設(shè)數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

(1);(2).

解析試題分析:(1)先令求出的值,然后令時(shí),在原式中用得到一個(gè)新的等式,并將該等式與原等式作差,求出數(shù)列時(shí)的通項(xiàng)公式,并對的值是否符合上述通項(xiàng)公式進(jìn)行檢驗(yàn),從而最終確定數(shù)列的通項(xiàng)公式;(2)先求出數(shù)列的通項(xiàng)公式,并根據(jù)數(shù)列的通項(xiàng)公式結(jié)構(gòu)選擇裂項(xiàng)法求和.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/73/0/1rwgm2.png" style="vertical-align:middle;" />,,       ①
所以當(dāng)時(shí),
當(dāng)時(shí),,       ② ,
①-②得,,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/50/8/1fslt3.png" style="vertical-align:middle;" />,適合上式,所以;
(2)由(1)得
所以,
所以.
考點(diǎn):1.定義法求數(shù)列的通項(xiàng)公式;2.裂項(xiàng)法求和

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且2.
(1)求數(shù)列的通項(xiàng)公式;
(2)若求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿足 
(1)求數(shù)列、的通項(xiàng)公式
(2)設(shè)=,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,,,為數(shù)列的前項(xiàng)和,為數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前n項(xiàng)和為,且,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列前n項(xiàng)和為,且,令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為正整數(shù))
(1)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)令,試比較的大小,并予以證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,數(shù)列滿足.
(Ⅰ)證明數(shù)列是等差數(shù)列并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

數(shù)列中,,前n項(xiàng)和為Sn,則S2009=______________。

查看答案和解析>>

同步練習(xí)冊答案