命題P:任意銳角△ABC,都有sinA>cosB;命題q:存在x∈R,|x|≤0.則


  1. A.
    P或q假
  2. B.
    P且q真
  3. C.
    ¬p且¬q真
  4. D.
    ¬p或¬q真
B
分析:對于命題P,由題意A+B>,利用正弦函數(shù)的單調(diào)性,推出sinA>cosB,故P為真;對于q,當(dāng)x=0時有x|≤0成立,從而得出正確選項.
解答:對于p,銳角△ABC中,A+B>,>A>-B>0,sinA>sin(-B)=cosB.故p為真,
命題q:存在x∈R,如x=0時,有|x|≤0.故q為真,
故P且q真.
故選B.
點評:本題考查復(fù)合命題的真假,考查任意角的三角函數(shù)的定義,正弦函數(shù)的單調(diào)性,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題P:任意銳角△ABC,都有sinA>cosB;命題q:存在x∈R,|x|≤0.則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省寶雞中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

命題P:任意銳角△ABC,都有sinA>cosB;命題q:存在x∈R,|x|≤0.則( )
A.P或q假
B.P且q真
C.¬p且¬q真
D.¬p或¬q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省攀枝花七中高三(下)開學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出以下5個命題:
①曲線x2-(y-1)2=1按平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量夾角為銳角θ,且滿足 ,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為   

查看答案和解析>>

同步練習(xí)冊答案