【題目】已知函數(shù)f(x)=ax﹣lnx﹣1,若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x+y﹣1=0垂直.
(1)求a的值;
(2)函數(shù)g(x)=f(x)﹣m(x﹣1)(m∈R)恰有兩個零點(diǎn)x1 , x2(x1<x2),求函數(shù)g(x)的單調(diào)區(qū)間及實數(shù)m的取值范圍.
【答案】
(1)解:函數(shù)f(x)的定義域為(0,+∞)
由 ,且 ,解得a=1.
(2)解:因為g(x)=(1﹣m)(x﹣1)﹣lnx,x∈(0,+∞)
則 .
(。┊(dāng)1﹣m≤0即m≥1時,g'(x)<0,所以g(x)在(0,+∞)上單調(diào)遞減
此時只存在一個零點(diǎn),不合題意.
(ⅱ)當(dāng)m<1時,令g'(x)=0,解得 .
當(dāng)x變化時,g(x)與g'(x)的變化情況如下表:
x | (0, ) | ||
g'(x) | ﹣ | 0 | + |
g(x) | ↘ | 極小值 | ↗ |
由題意可知, .
下面判斷極小值的正負(fù).
設(shè)h(m)=m+ln(1﹣m),m<1
①當(dāng)m=0時,h(0)=0,即g(x)極小=0
此時g(x)恰有一個零點(diǎn)不合題意
②當(dāng)m≠0且m<1時,
當(dāng)m<0時,h'(m)>0; 當(dāng)0<m<1時,h'(x)<0
所以h(m)在(﹣∞,0)上單調(diào)遞增,在(0,1)單調(diào)遞減.
所以h(m)<h(0)=0,此時g(x)恰有兩個零點(diǎn).
綜上,m的取值范圍是(﹣∞,0)∪(0,1).
【解析】(1)求出f(x)的導(dǎo)數(shù),根據(jù) ,求出a的值即可;(2)求出g(x)的導(dǎo)數(shù),通過討論m的范圍結(jié)合g(x)的單調(diào)性,求出g(x)的極小值,結(jié)合極小值的正負(fù),求出m的范圍即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2﹣a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時,求A∩B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時,函數(shù)解析式f(x)= ﹣ (a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某學(xué)校用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其日均課外閱讀時間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:
t | ||||||
男同學(xué)人數(shù) | 7 | 11 | 15 | 12 | 2 | 1 |
女同學(xué)人數(shù) | 8 | 9 | 17 | 13 | 3 | 2 |
若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計該校4000名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動.
(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;
(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間有唯一零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)﹣x2 , 在(1,2)內(nèi)任取兩個實數(shù)x1 , x2(x1≠x2),若不等式 >1恒成立,則實數(shù)a的取值范圍為( )
A.(28,+∞)
B.[15,+∞)
C.[28,+∞)
D.(15,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間r(小時)之間近似滿足如圖所示的曲線
(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于 微克時,治療有效,求服藥一次后治療有效的時間是多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為2.
(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;
(Ⅱ)中,角,,所對的邊分別是,,,且,,若,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com