分析 (Ⅰ)利用三角函數(shù)中的恒等變換應用化簡函數(shù)解析式,由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z可解得f(x)的單調(diào)遞減區(qū)間.
(Ⅱ)由x的范圍可得f(x)的范圍,由恒成立可得m<[f(x)+2]min且m>[f(x)-2]max,可得答案.
解答 解:(Ⅰ)∵f(x)=sin2x-$\sqrt{3}$cos2x+1=2sin(2x-$\frac{π}{3}$)+1,
∴由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z可解得f(x)的單調(diào)遞減區(qū)間:[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
(Ⅱ)當x∈[$\frac{π}{4}$,$\frac{π}{2}$]時,sin(2x-$\frac{π}{3}$)∈[$\frac{1}{2}$,1],∴f(x)∈[2,3],
由|f(x)-m|<2可得-2<f(x)-m<2,
∴f(x)-2<m<f(x)+2恒成立.
∴m<[f(x)+2]min=4,且m>[f(x)-2]max=1.
故m的取值范圍是(1,4).
點評 本題考查正弦函數(shù)的圖象和性質(zhì),考查了三角函數(shù)的恒等變形,涉及恒成立問題,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com