【題目】對于空間兩不同的直線,兩不同的平面,有下列推理:
(1), (2),(3)
(4), (5)
其中推理正確的序號為( )
A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)
【答案】C
【解析】因為時, 可以在平面內(nèi),所以(1)不正確;因為時, 可以在平面內(nèi),所以(2)不正確;因為時可以在平面內(nèi),所以(3)不正確;根據(jù)線面垂直的性質(zhì)定理可得,(4)正確;根據(jù)線面平行的性質(zhì)及線面垂直的性質(zhì)可得(5)正確,推理正確的序號為(4)(5),故選C.
【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定與性質(zhì),屬于難題. 空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足: ,且該函數(shù)的最小值為1.
(1)求此二次函數(shù)的解析式;
(2)若函數(shù)的定義域為(其中),問是否存在這樣的兩個實數(shù), ,使得函數(shù)的值域也為?若存在,求出, 的值;若不存在,請說明理由.
(3)若對于任意的,總存在使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個極值點,則實數(shù)k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有命題:
①y=|sinx-|的周期是2π;
②y=sinx+sin|x|的值域是[0,2] ;
③方程cosx=lgx有三解;
④為正實數(shù),在上遞增,那么的取值范圍是;
⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,則x1-x2必為的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點P(cosB-sinA,sinB-cosA)在第二象限;
⑦在中,若,則鈍角三角形。
其中真命題個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點M(0,1)的直線l交橢圓C: 于A,B兩點,F(xiàn)1為橢圓的左焦點,當(dāng)△ABF1周長最大時,直線l的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)是定義在實數(shù)集上的奇函數(shù),并且在區(qū)間上是單調(diào)遞增的函數(shù).
(1)研究并證明函數(shù)在區(qū)間上的單調(diào)性;
(2)若實數(shù)滿足不等式,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M: 和點 ,動圓P經(jīng)過點N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點A是曲線E與x軸正半軸的交點,點B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點,且與圓 ()關(guān)于軸對稱.
(I)求圓的方程;
(II)若有相互垂直的兩條直線,都過點,且被圓所截得弦長分別是,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com