已知P在圓x2+y2+4x-6y+12=0上,點(diǎn)Q在直線4x+3y=21上,則|PQ|的最小值為
 
考點(diǎn):直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式
專(zhuān)題:直線與圓
分析:圓心C(-2,3)到直線4x+3y=21的距離d=
|-8+9-21|
16+9
=4,從而得到|PQ|的最小值=d-r=4-1=3.
解答: 解:P在圓x2+y2+4x-6y+12=0上,
圓x2+y2+4x-6y+12=0的圓心C(-2,3),半徑r=
1
2
16+36-48
=1,
圓心C(-2,3)到直線4x+3y=21的距離d=
|-8+9-21|
16+9
=4,
∴|PQ|的最小值=d-r=4-1=3.
故答案為:3.
點(diǎn)評(píng):本題考查線段長(zhǎng)最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={3,m2}、B={1,3,2m-1},若A?B,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△AOB中,∠AOB=
3
4
π,點(diǎn)O到直線AB的距離為10,則邊AB的最小值為.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:x2+(a-3)x-3a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題,其中正確的有( 。﹤(gè)
①在區(qū)間(1,+∞)上,函數(shù)y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三個(gè)增函數(shù);
②命題p:?x∈R,sinx<1,則x¬p:?x0∈R,使sinx0>1;
③若函數(shù)f(x)是偶函數(shù),則f(x-1)的圖象關(guān)于直線x=1對(duì)稱(chēng);
④若角α,β滿足-
π
2
<α<β<
π
2
,則2α-β的取值范圍是(-
3
2
π,
3
2
π)
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條直線a,b,c,兩個(gè)平面α,β.則下列命題中:
①a∥c,c∥b⇒a∥b;
②若m⊥α,m∥n,n?β⇒α⊥β;
③a∥c,c∥α⇒a∥α;
④α∥β,a∥α⇒∥β;
⑤a?α,b∥a,a∥b⇒α∥a,
正確的命題是(  )
A、②④B、①②C、①②⑤D、③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)等差數(shù)列{an},{bn},
a1+a2+…+an
b1+b2+…+bn
=
7n+2
n+3
,則
a5
b5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=ex-e-x的敘述正確的是
 
.(填正確序號(hào))
(1)f(x)為奇函數(shù)           
(2)f(x)為增函數(shù)
(3)f(x)在x=0處取極值   
(4)f(x)的圖象關(guān)于點(diǎn)(0,1)對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,其中n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
(2)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令cn=
nan-4
nan
(n∈N*),在(1)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”

查看答案和解析>>

同步練習(xí)冊(cè)答案