1.設(shè)數(shù)列{an}為等比數(shù)列,則下面四個數(shù)列:
(1){an3};
(2){pan}(p為非零常數(shù));
(3){anan+1};
(4){an+an+1}.
其中是等比數(shù)列的有幾個( 。
A.1B.2C.3D.4

分析 利用等比數(shù)列的定義即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q≠0,則下面四個數(shù)列:
(1)由于$\frac{{a}_{n+1}^{3}}{{a}_{n}^{3}}$=q3,因此{an3}為等比數(shù)列;
(2)由于$\frac{p{a}_{n+1}}{p{a}_{n}}$=q,因此{pan}為等比數(shù)列;
(3)由于$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=q2,因此{anan+1}為等比數(shù)列;
(4)取an=(-1)n,則an+an+1=0,因此數(shù)列{an+an+1}不是等比數(shù)列.
其中是等比數(shù)列有3個.
故選:C.

點評 本題考查了等比數(shù)列的通項公式及其定義,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若數(shù)列{an}的前n項的和為Sn,且an=3Sn-2,則{an}的通項公式${a}_{n}=(-\frac{1}{2})^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC是邊長為l的等邊三角形,D、E分別是AB、AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到三棱錐A-BCF,其中BC=$\frac{\sqrt{2}}{2}$.
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow{a}$•$\overrightarrow$=-$\frac{{5\sqrt{30}}}{2}$,且($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=-15,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示,已知集合A={x|框圖中輸出的x值},集合B={y|框圖中輸出的y值},全集U=Z.當(dāng)x=-1時,(∁UA)∩B={-3,-1,7,9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)是定義在R上的奇函數(shù),則一定有( 。
A.f(x)+f(-x)=0B.f(x)-f(-x)=0C.$\frac{f(-x)}{f(x)}=-1$D.$\frac{f(-x)}{f(x)}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列曲線的微分.
(1)y=ln(1-x2);
(2)$\left\{\begin{array}{l}{x=a•cost}\\{y=b•sint}\end{array}\right.$;
(3)r=a•θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-5≤0}\\{x≥1}\\{y≥0}\\{x+2y-3≥0}\end{array}\right.$,則$\frac{y}{x}$的值域為[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x的不等式|x-2|-|x-3|≤m對x∈R恒成立.
(1)求實數(shù)m的最小值;
(2)若a,b,c為正實數(shù),k為實數(shù)m的最小值,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k,求證:a+2b+3c≥9.

查看答案和解析>>

同步練習(xí)冊答案