【題目】在如圖所示的多面體中, 平面

.

(Ⅰ)在上求作,使平面,請(qǐng)寫(xiě)出作法并說(shuō)明理由;

(Ⅱ)若在平面的正投影為,求四面體的體積.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(Ⅰ)本問(wèn)為探索性問(wèn)題,考查直線與平面平行,可以通過(guò)線面平行判定定理證明,也可以通過(guò)面面平行來(lái)證明線面平行,根據(jù)本題實(shí)際條件,可以選擇先證明面面平行,根據(jù)底面為等腰梯形且,取中點(diǎn),易證四邊形為平行四邊形,所以可以證明出平面平面,則交點(diǎn)即為所求點(diǎn),易證平面;(Ⅱ)本問(wèn)主要是找到點(diǎn)在平面內(nèi)的正投影,即過(guò)點(diǎn)的平面的垂線,根據(jù)已知條件, 平面,易證明平面平面,因此根據(jù)面面垂直性質(zhì)定理,過(guò)點(diǎn)向作垂線,垂足即為點(diǎn),然后在底面內(nèi)可以求出的長(zhǎng)度,再求出的面積,然后以為頂點(diǎn), 為底面,可以求出四面體的體積.

試題解析:(Ⅰ)取的中心,連結(jié),交,

連結(jié),此時(shí)為所求作的點(diǎn)

下面給出證明:

, ,又,四邊形是平行四邊形,

.

平面, 平面,平面,

, 平面平面 平面,

平面, 平面, ,

平面平面

平面,平面.

(Ⅱ) 平面, 平面,

平面平面.

過(guò),交的延長(zhǎng)線于點(diǎn),則平面在平面上的正投

影.

在直角三角形中,得, ,

.

所以四面體的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為 .

1)求數(shù)列的通項(xiàng)公式;

2)令設(shè)數(shù)列的前項(xiàng)和為,

3)令,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 分別為橢圓 的左、右焦點(diǎn),點(diǎn)在橢圓上.

(Ⅰ)求的最小值;

(Ⅱ)設(shè)直線的斜率為,直線與橢圓交于, 兩點(diǎn),若點(diǎn)在第一象限,且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)棱平面 為等腰直角三角形, , 分別是, 的中點(diǎn),且

(Ⅰ)求證: 平面

(Ⅱ)若,求點(diǎn)到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列五個(gè)命題中:
①函數(shù)y=loga(2x﹣1)+2015(a>0且a≠1)的圖象過(guò)定點(diǎn)(1,2015);
②若定義域?yàn)镽函數(shù)f(x)滿足:對(duì)任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則f(x)是減函數(shù);
③f(x+1)=x2﹣1,則f(x)=x2﹣2x;
④若函數(shù)f(x)=是奇函數(shù),則實(shí)數(shù)a=﹣1;
⑤若a=(c>0,c≠1),則實(shí)數(shù)a=3.
其中正確的命題是 .(填上相應(yīng)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有蒲(水生植物名)生一日,長(zhǎng)三尺;莞(植物名,俗稱(chēng)水蔥、席子草)生一日,長(zhǎng)一尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?”意思是:今有蒲生長(zhǎng)1日,長(zhǎng)為3尺;莞生長(zhǎng)1日,長(zhǎng)為1尺.蒲的生長(zhǎng)逐日減半,莞的生長(zhǎng)逐日增加1倍.若蒲、莞長(zhǎng)度相等,則所需的時(shí)間約為(結(jié)果保留一位小數(shù).參考數(shù)據(jù):,

A.1.3日 B.1.5日

C.2.6日 D.2.8日

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(I)若曲線在點(diǎn)處的切線方程為,求的值;

(II)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義域?yàn)镽上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案