設(shè)數(shù)列{an}是單調(diào)遞增的等差數(shù)列,前三項的和為12,前三項的積為48,則它的首項是

[  ]

A.1

B.2

C.4

D.8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
,an=f(n)
,若數(shù)列{an}是單調(diào)遞減數(shù)列,則實數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>2,給定數(shù)列{an},a1=a,an+1an=an+1+
1
2
a
2
n
(n∈N*)

(1)求證:an>2;
(2)求證:數(shù)列{an}是單調(diào)遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)三模)已知數(shù)列{an}中,a1>0,an+1=
3+an
2
(n∈N*).
(1)試求a1的值,使數(shù)列{an}是一個常數(shù)列;
(2)試求a1的取值范圍,使得數(shù)列{an}是單調(diào)增數(shù)列;
(3)若{an}不為常數(shù)列,設(shè)bn=|an+1-an|(n∈N*),Sn為數(shù)列{bn}的前n項和,請你寫出a1的一個值,使得Sn
1
2
恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前N項和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案