已知下列命題:①已知α,β表示兩個(gè)不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的充要條件;
②函數(shù)圖象對(duì)稱(chēng)中心的坐標(biāo)為;
③在平面直角坐標(biāo)系中圓C的參數(shù)方程為(α為參數(shù)),若以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,則圓C的極坐標(biāo)方程為ρ=2cosθ;
④在△ABC中,若b=2asinB(其中a,b分別為角A,角B的對(duì)邊),則A等于30°;
其中真命題的序號(hào)是(    )(填上所有正確的序號(hào))。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若
a
2
+
b
2
=0
,則
a
=
b
=
0
;
②若A(x1,y1),B(x2,y2),則
1
2
AB
=(
x1+x2
2
,
y1+y2
2
)

③已知
a
,
b
c
是三個(gè)非零向量,若
a
+
b
=
0
;,則|
a
c
|=|
b
c
|
;
④已知λ1>0,λ2>0,
e1
e2
是一組基底,
a
1
e1
2
e2
,則
a
e1
不共線,
a
e2
也不共線;
a
b
共線?
a
b
=|
a
||
b
|

其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中所有正確的序號(hào)是
①④
①④

①函數(shù)f(x)=ax-1+3(a>0且a≠1)的圖象一定過(guò)定點(diǎn)P(1,4);
②函數(shù)f(x-1)的定義域是(1,3),則函數(shù)f(x)的定義域?yàn)椋?,4);
③已知f(x)=x5+ax3+bx-8,且f(-2)=8,則f(2)=-8;
④f(x)=
1
1-2x
-
1
2
為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①經(jīng)過(guò)空間一點(diǎn)一定可作一條直線與兩異面直線都垂直;
②經(jīng)過(guò)空間一點(diǎn)一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個(gè)側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
①在函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)的圖象中,相鄰兩個(gè)對(duì)稱(chēng)中心的距離為π;
②函數(shù)y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱(chēng);
③關(guān)于x的方程ax2-2ax-1=0有且僅有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)a=-1;
④已知命題p:對(duì)任意的x∈R,都有sinx≤1,則¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①、已知函數(shù)y=f(x).(x∈R),則y=f(x-1)的圖象與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱(chēng);
②、設(shè)函數(shù)f(x)=cos(x+φ),則“f(x)為偶函數(shù)”的充要條件是“f'(0)=0”;
③、等比數(shù)列{an}的前n項(xiàng)和為Sn,則“公比q>0”是“數(shù)列{Sn}單增”的充要條件;
④、實(shí)數(shù)x,y,則“
x-y≥0
y≥0
x+y≤2
”是“|2y-x|≤2”的充分不必要條件.
其中真命題有
①②④
①②④
(寫(xiě)出你認(rèn)為正確的所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案