求直線
被圓
所截得的弦長.
試題分析:圓
圓心為
,半徑為
,則圓心到直線
的距離為
,得弦長的一半為
,即弦長為
.
點評:直線與圓相交時,圓的半徑,圓心到直線的距離及弦長的一半構成直角三角形,此三角形在求解有關于圓的題目時經常用到
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知P(x,y)是直線
上一動點,PA,PB是圓C:
的兩條切線,A、B是切點,若四邊形PACB的最小面積是2,則
的值為
A.3 B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設直線
和圓
相交于點
。
(1)求弦
的垂直平分線方程;(2)求弦
的長。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知圓
的圓心為
,直線
與圓
相交于
兩點,且
,則圓
的方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知圓的方程為
,設該圓中過點
的最長弦和最短弦分別為
和
,則四邊形
的面積是 ___________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓
截直線
的弦長為
;
(1)求
的值;
(2)求過點
的圓的切線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若直線
與圓
有公共點,則實數(shù)
取值范圍是( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
動點在圓x
2+y
2=1上移動時,它與定點B(3,0)連線的中點軌跡方程是( )
A.(x+3)2+y2=4 | B.(x-3)2+y2=1 |
C.(2x-3)2+4y2=1 | D.(x+)2+y2= |
查看答案和解析>>