設(shè)函數(shù)
(Ⅰ)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè),若對(duì)任意,有,求的取值范圍
(Ⅰ)在區(qū)間內(nèi)存在唯一的零點(diǎn) (Ⅱ)的取值范圍為
解析試題分析:(Ⅰ)函數(shù)y=f(x)如果滿足:①函數(shù)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,②f(a)·f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn);方法:先利用零點(diǎn)的判定方法判斷存在性,再利用區(qū)間內(nèi)函數(shù)是單調(diào)的說明唯一性
(Ⅱ)先對(duì)任意,都有,說明最大值與最小值之差,然后在進(jìn)行分類討論
試題解析:(Ⅰ)設(shè),當(dāng) 時(shí), 1分
,在區(qū)間內(nèi)存在零點(diǎn) 2分
又設(shè),,
即在區(qū)間內(nèi)單調(diào)遞增 2分
在區(qū)間內(nèi)存在唯一的零點(diǎn) 1分
(Ⅱ)當(dāng)時(shí), 1分
對(duì)任意,都有等價(jià)于在上的最大值與最小值之差,1分 據(jù)此分類討論如下:
(1)、當(dāng),即時(shí),,與題設(shè)矛盾; 1分
(2)、當(dāng),即時(shí),恒成立; 1分
(3)當(dāng),即時(shí),恒成立 1分
綜上可得,,的取值范圍為 1分
考點(diǎn):1、零點(diǎn)的判定方法;2、分類討論的思想方法
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(Ⅰ)若函數(shù)在區(qū)間其中上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且.
(1)判斷的奇偶性并說明理由;
(2)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(3)若對(duì)任意實(shí)數(shù),有成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(1)求的單調(diào)區(qū)間;
⑵如果是曲線上的任意一點(diǎn),若以為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;
⑶討論關(guān)于的方程的實(shí)根情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)若是函數(shù)的極值點(diǎn),和是函數(shù)的兩個(gè)不同零點(diǎn),且,求;
(2)若對(duì)任意,都存在(為自然對(duì)數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù),過曲線上的點(diǎn)的切線方程為.
(1)若在時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com