精英家教網 > 高中數學 > 題目詳情

【題目】在棱長為a的正方體OABC-O1A1B1C1中,E,F分別是AB,BC上的動點,且AE=BF,求證:A1F⊥C1E.

【答案】見解析

【解析】

以O為坐標原點建立如圖所示的空間直角坐標系,則A1(a,0,a),C1(0,a,a).

設AE=BF=x,則E(a,x,0),F(a-x,a,0),所以=(-x,a,-a),=(a,x-a,-a).

則計算即可.

證明:以O為坐標原點建立如圖所示的空間直角坐標系,則A1(a,0,a),C1(0,a,a).

設AE=BF=x,則E(a,x,0),F(a-x,a,0),所以=(-x,a,-a),=(a,x-a,-a).

因為=(-x,a,-a)·(a,x-a,-a)=-ax+ax-a2+a2=0,所以,即A1F⊥C1E.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設點F1(﹣c,0),F2(c,0)分別是橢圓C: =1(a>1)的左、右焦點,P為橢圓C上任意一點,且 的最小值為0.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F2N⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 , (λ∈R),且 =﹣4,則λ的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x3 ax2 , a∈R,
(1)當a=2時,求曲線y=f(x)在點(3,f(3))處的切線方程;
(2)設函數g(x)=f(x)+(x﹣a)cosx﹣sinx,討論g(x)的單調性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體ABCD—A1B1C1D1中,若EA1C1中點,則直線CE垂直于( )

A. AC B. BD C. A1D D. A1A

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學藝術專業(yè)400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;
(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區(qū)間[40,50)內的人數;
(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).

(1),求點D的坐標;

(2)問是否存在實數α,β,使得成立?若存在,求出α,β的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點.
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓經過點,),且兩個焦點,的坐標依次為(1,0)和(1,0).

(Ⅰ)求橢圓的標準方程;

(Ⅱ),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,求當為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程

查看答案和解析>>

同步練習冊答案