4.在正三棱錐P-ABC中,點(diǎn)P,A,B,C都在球O的球面上,PA,PB,PC兩兩互相垂直,且球心O到底面ABC的距離為$\frac{\sqrt{3}}{3}$,則球O的表面積為12π.

分析 先利用正三棱錐的特點(diǎn),將球的內(nèi)接三棱錐問題轉(zhuǎn)化為球的內(nèi)接正方體問題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問題,利用等體積法可實(shí)現(xiàn)此計算.

解答 解:∵正三棱錐P-ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接球O,
設(shè)球O的半徑為R,
則正方體的邊長為$\frac{2\sqrt{3}R}{3}$,
球心到截面ABC的距離即正方體中心到截面ABC的距離,
設(shè)P到截面ABC的距離為h,則正三棱錐P-ABC的體積V=$\frac{1}{3}$S△ABC×h=$\frac{1}{3}$S△PAB×PC=$\frac{4\sqrt{3}}{27}$,
△ABC為邊長為$\frac{2\sqrt{6}}{3}$R的正三角形,S△ABC=$\frac{\sqrt{3}}{4}×$($\frac{2\sqrt{6}}{3}$R)2=$\frac{2\sqrt{3}}{3}$R2,
∴h=$\frac{2R}{3}$,
∴球心(即正方體中心)O到截面ABC的距離為R-$\frac{2R}{3}$=$\frac{R}{3}$=$\frac{\sqrt{3}}{3}$,∴$R=\sqrt{3}$,
∴S=4πR2=12π.
故答案為:12π.

點(diǎn)評 本題考查球的內(nèi)接三棱錐和內(nèi)接正方體間的關(guān)系及其相互轉(zhuǎn)化,棱柱的幾何特征,球的幾何特征,點(diǎn)到面的距離問題的解決技巧,有一定難度,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}滿足a4-a2=4,a3=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足${b_n}={(\sqrt{2})^{a_n}}$,求數(shù)列{bn}的前8項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$sin(α+\frac{π}{6})=\frac{1}{3}$,則$cos(2α-\frac{2π}{3})$的值是( 。
A.$\frac{5}{9}$B.$-\frac{8}{9}$C.$-\frac{1}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“$?{x_0}∈R,{2^{x_0}}≤0$”的否定是( 。
A.不存在${x_0}∈R,{2^{x_0}}>0$B.?x∈R,2x>0
C.$?{x_0}∈R,{2^{x_0}}≥0$.D.?x∈R,2x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.圓${C_1}:{x^2}+{y^2}+2x+2y-2=0$與圓${C_2}:{x^2}+{y^2}-4x-2y+4=0$的公切線有(  )
A..1條B..2條C..3條D..4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)( 。
A.圖象向右平移$\frac{π}{3}$個單位長度得到y(tǒng)=sin2x圖象
B.圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)對稱
C.圖象關(guān)于直線x=-$\frac{π}{12}$對稱
D.在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+2$\overrightarrow$|=( 。
A.2B.$\sqrt{6}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖是正四棱錐P-ABCD的三視圖,其中主視圖是邊長為1的正三角形,則這個四棱錐的側(cè)棱長為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為調(diào)查運(yùn)城市學(xué)生百米運(yùn)動成績,從該市學(xué)生中按照男女比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測試,學(xué)生成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組[13,14),第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)求這組數(shù)據(jù)的中位數(shù)(精確到0.1)
(Ⅱ)根據(jù)有關(guān)規(guī)定,成績小于16秒為達(dá)標(biāo).如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女生達(dá)標(biāo)情況如表:
性別
是否達(dá)標(biāo)
合計
達(dá)標(biāo)a=24b=630
不達(dá)標(biāo)c=8d=1220
合計3218
根據(jù)表中所給的數(shù)據(jù),能否有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個更好的解決方法來?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K)0.0500.0100.001
K3.8416.62510.828

查看答案和解析>>

同步練習(xí)冊答案