【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=

(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).

【答案】
(1)解: cos∠CAD= = =
(2)解:∵cos∠BAD=﹣ ,

∴sin∠BAD= = ,

∵cos∠CAD=

∴sin∠CAD= =

∴sin∠BAC=sin(∠BAD﹣∠CAD)=sin∠BADcos∠CAD﹣cos∠BADsin∠CAD= × + × = ,

∴由正弦定理知 = ,

∴BC= sin∠BAC= × =3


【解析】(1)利用余弦定理,利用已知條件求得cos∠CAD的值.(2)根據(jù)cos∠CAD,cos∠BAD的值分別,求得sin∠BAD和sin∠CAD,進(jìn)而利用兩角和公式求得sin∠BAC的值,最后利用正弦定理求得BC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解一片經(jīng)濟(jì)林的生長(zhǎng)情況,隨機(jī)抽測(cè)了其中60株樹木的底部周長(zhǎng)(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測(cè)的60株樹木中,有株樹木的底部周長(zhǎng)小于100cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中共有9個(gè)球,其中有4個(gè)紅球,3個(gè)黃球和2個(gè)綠球,這些球除顏色外完全相同.
(1)從盒中一次隨機(jī)取出2個(gè)球,求取出的2個(gè)球顏色相同的概率P;
(2)從盒中一次隨機(jī)取出4個(gè)球,其中紅球、黃球、綠球的個(gè)數(shù)分別記為x1 , x2 , x3 , 隨機(jī)變量X表示x1 , x2 , x3中的最大數(shù),求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公路AM,AN圍成一塊頂角為α的角形耕地,其中tanα=-2,在該塊土地中P處有一小型建筑,經(jīng)測(cè)量,它到公路AMAN的距離分別為3km,km,現(xiàn)要過(guò)點(diǎn)P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個(gè)工業(yè)園,為盡量減少耕地占用,問(wèn)如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,,,數(shù)列滿足:.

(1)求;

(2)求數(shù)列的通項(xiàng)公式及其前項(xiàng)和

(3)記集合,若的子集個(gè)數(shù)為32,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為實(shí)常數(shù),函數(shù).

(1)若是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí)函數(shù)有兩個(gè)不同的零點(diǎn),求證:.(注:為自然對(duì)數(shù)的底數(shù));

(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a是一個(gè)各位數(shù)字都不是0且沒有重復(fù)數(shù)字三位數(shù),將組成a的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=815,則I(a)=158,D(a)=851),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,輸出的結(jié)果b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.

(1)證明:AC=AB1
(2)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案