已知拋物線y2=4px(p>0)與橢圓
x2
a2
+
y2
b2
=1(a>b>0)有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的交點(diǎn),且AF⊥x軸,則橢圓的離心率為
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先把對(duì)應(yīng)圖形畫(huà)出來(lái),求出對(duì)應(yīng)焦點(diǎn)和點(diǎn)A的坐標(biāo)(都用p寫(xiě)),利用橢圓定義求出2a和2c就可找到橢圓的離心率.
解答: 解:由題可得圖,設(shè)橢圓另一焦點(diǎn)為E,
因?yàn)閽佄锞y2=4px(p>0)的焦點(diǎn)F(p,0)
把x=p代入y2=4px解得y=±2p,
所以A(p,2p)又E(-p,0).
故|AE|=2
2
p,|AF|=2p,|EF|=2p.
所以2a=|AE|+|AF|=(2
2
+2)p,2c=2p.
橢圓的離心率e=
c
a
=
2
-1.
故答案為:
2
-1.
點(diǎn)評(píng):本題考查拋物線與橢圓的綜合問(wèn)題.在研究圓錐曲線問(wèn)題時(shí),用定義來(lái)解題是比較常用的方法..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)選派40名同學(xué)參加倫敦奧運(yùn)會(huì)青年志愿者服務(wù)隊(duì)(簡(jiǎn)稱“青志隊(duì)”),他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如表所示.
活動(dòng)次數(shù)123
參加人數(shù)51520
(Ⅰ)從“青志隊(duì)”中任意選3名學(xué)生,求這3名同學(xué)中至少有2名同學(xué)參加活動(dòng)次數(shù)恰好為3次的概率;
(Ⅱ)從“青志隊(duì)”中任選兩名學(xué)生,用ξ表示這兩人參加活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線ρcos2θ=4sinθ的焦點(diǎn)的極坐標(biāo)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+lnx,數(shù)列{an}的首項(xiàng)為m(m為大于1的常數(shù)),且an+1=f(an)(n∈N*
(1)設(shè)F(x)=f(x)-x,求函數(shù)F(x)的單調(diào)區(qū)間;
(2)求證:?n∈N*,an+1>an>1;
(3)若當(dāng)t∈(-∞,e+
1
e
)時(shí),an+1>tan,恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={1,2,3,4,5},N={2,4,6,8,10},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=
2
,b=2,B=45°.求:
(1)角A的大;
(2)邊c的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直三棱柱ABC-A1B1C1中,AB1⊥A1C,D為AB的中點(diǎn),且AB=4,AC=BC=3.
(1)求二面角A1-CD-B1的平面角的余弦值;
(2)求四面體CDA1B1與直三棱柱ABC-A1B1C1的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)半徑為
3
的球有一個(gè)內(nèi)接正方體(即正方體的頂點(diǎn)都在球面上),求這個(gè)球的球面面積與其內(nèi)接正方體的全面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aex+
1
2
x2+bx,曲線y=f(x)在點(diǎn)(0,f(0))處的切線為y-1=0.
(1)求f(x)的解析式及單調(diào)區(qū)間;
(2)若f(x)≥
1
2
x2+x+m,求m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案