18.三個(gè)數(shù)70.3,0.37,㏑0.3,的大小順序是(  )
A.70.3,0.37,㏑0.3B.70.3,㏑0.3,0.37C.0.37,70.3,㏑0.3D.㏑0.3,70.3,0.37

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:三個(gè)數(shù)70.3>1,0.37∈(0,1),㏑0.3<0,
∴70.3>0.37>㏑0.3,
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若$f(a)≥f(\frac{1}{3})$,則a的取值范圍是( 。
A.$a≥\frac{1}{3}$B.$a≤-\frac{1}{3}$C.$-\frac{1}{3}≤a≤\frac{1}{3}$D.$a≥\frac{1}{3}$或$a≤-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$.以原點(diǎn)為圓心,橢圓的短軸長為直徑的圓與直線x-y+$\sqrt{2}$=0相切.
(1)求橢圓C的方程;
(2)如圖,若斜率為k(k≠0)的直線l與x軸、橢圓C順次相交于A,M,N(A點(diǎn)在橢圓右頂點(diǎn)的右側(cè)),且∠NF2F1=∠MF2A.求證直線l恒過定點(diǎn),并求出斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=0.20.3,b=log0.32,c=log0.30.2,則( 。
A.a<b<cB.b<a<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.含有三個(gè)實(shí)數(shù)的集合可表示為{a,1,$\frac{a}$},也可表示為{a+b,0,a2},則a2016+b2016的值是( 。
A.0B.1C.-1D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{{e}^{x}}{a{x}^{2}+bx+c}$,其中a,b,c∈R.
(1)若a=b=c=1,求f(x)的單調(diào)區(qū)間;
(2)若b=c=1,且當(dāng)x≥0時(shí),f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)y=f(x)有反函數(shù)y=f-1(x),又y=f(x+2)與y=f-1(x-1)互為反函數(shù),則f-1(2004)-f-1(1)的值為( 。
A.4006B.4008C.2003D.2004

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若f(x2+1)=2x2+1,則f(x)=2x-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案