分析 (1)若a=1,b=1,c=1,求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),求f(x)的單調(diào)區(qū)間;
(2)若b=c=1,且當(dāng)x≥0時(shí),f(x)≥1總成立,先確定a≥0,在分類(lèi)討論,確定函數(shù)的最小值,即可求實(shí)數(shù)a的取值范圍;
解答 解:(1)a=1,b=1,c=1,f′(x)=$\frac{{e}^{x}{(x}^{2}-x)}{{{(x}^{2}+x+1)}^{2}}$,
∴0<x<1,f′(x)<0,x<0或x>1時(shí),f′(x)>0,
∴函數(shù)的單調(diào)減區(qū)間是(0,1),單調(diào)增區(qū)間是(-∞,0),(1,+∞);
(2)若b=c=1,且當(dāng)x≥0時(shí),f(x)≥1總成立,則a≥0.
a=0,f(x)=$\frac{{e}^{x}}{x+1}$,f′(x)=$\frac{{xe}^{x}}{{(x+1)}^{2}}$≥0,
∴f(x)min=f(0)=1;
a>0,f′(x)=$\frac{{e}^{x}•ax•(x+\frac{1-2a}{a})}{{({ax}^{2}+x+1)}^{2}}$,
0<a≤$\frac{1}{2}$,f(x)min=f(0)=1;a≥$\frac{1}{2}$,f(x)在[0,$\frac{2a-1}{a}$]上為減函數(shù),
在[$\frac{2a-1}{a}$,+∞)上為增函數(shù),
f(x)min<f(0)=1,不成立,
綜上所述,0≤a≤$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 70.3,0.37,㏑0.3 | B. | 70.3,㏑0.3,0.37 | C. | 0.37,70.3,㏑0.3 | D. | ㏑0.3,70.3,0.37, |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a,b都不是偶數(shù) | B. | a,b不都是偶數(shù) | ||
C. | a,b都是奇數(shù) | D. | a,b一個(gè)是奇數(shù)一個(gè)是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | (0,2) | C. | (2,+∞) | D. | (2,$\frac{16}{7}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com