【題目】對于函數(shù),若存在,使成立,則稱

不動點.已知函數(shù).

(1)當時,求函數(shù)的不動點;

(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;

(3)在(2)的條件下,若fx)的兩個不動點為,且,求實數(shù)的取值范圍.

【答案】(1)1(2)0a1(3)

【解析】

試題分析:(1)寫出函數(shù)f(x)=x2+3x+1,利用不動點定義,列出方程求解即可;(2)f(x)恒有兩個不動點,得到ax2+(b+1)x+(b-1)=x,通過b2-4a(b-1)>0恒成立,利用判別式得到不等式求解即可;(3)利用定義推出,通過換元令t=a2(0,1),任何求解b的范圍

試題解析:1,因為x0為不動點,因此所以x0=1

所以-1fx)的不動點. ……………… 4

2)因為fx)恒有兩個不動點,fx=ax2+b+1x+b1=x

ax2+bx+b1=0),

由題設b24ab1)>0恒成立,

即對于任意bR,b24ab+4a0恒成立,

所以(4a244a)<0a2a0,所以0a1. ………………8

(3)因為,所以,

,則. ……………… 12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)滿足以下兩個條件:

不等式的解集是函數(shù)上的最小值是3.

1的解析式;

2若點在函數(shù)的圖象上,且

i求證:數(shù)列為等比數(shù)列;

ii,是否存在正整數(shù),使得取到最小值?若有,請求出的值;若無,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為D,如果,使得成立,則稱函數(shù)“Ω函數(shù). 給出下列四個函數(shù):;;, 則其中“Ω函數(shù)共有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是定義在(0,+)上的增函數(shù),且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值.

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列敘述中,正確的是( )

A.四邊形是平面圖形

B.有三個公共點的兩個平面重合。

C.兩兩相交的三條直線必在同一個平面內(nèi)

D.三角形必是平面圖形。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1用定義證明:在R上是單調(diào)減函數(shù);

2是奇函數(shù),求值;

32的條件下,解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位建造一間地面面積為12 m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度x不得超過a m,房屋正面的造價為400元/m2,房屋側(cè)面的造價為150元/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3 m,且不計房屋背面的費用當側(cè)面的長度為多少時,總造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】遼寧號航母紀念章從2012年10月5日起開始上市.通過市場調(diào)查,得到該紀念章每1枚的市場價 單位:元與上市時間單位:天的數(shù)據(jù)如下:

1根據(jù)上表數(shù)據(jù)結合散點圖,從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述遼寧號航母紀念章的市場價與上市時間的變化關系并說明理由:①;②;③

2利用你選取的函數(shù),求遼寧號航母紀念章市場價最低時的上市天數(shù)及最低的價格.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】與均勻隨機數(shù)特點不符的是(  )

A. 它是[0,1]內(nèi)的任何一個實數(shù)

B. 它是一個隨機數(shù)

C. 出現(xiàn)的每一個實數(shù)都是等可能的

D. 是隨機數(shù)的平均數(shù)

查看答案和解析>>

同步練習冊答案