給出下列命題:
①函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于x=2對(duì)稱;
②函數(shù)y=f(x)導(dǎo)函數(shù)為y=f′(x),若f′(x0)=0,則f(x0)必為函數(shù)y=f(x)的極值;
③函數(shù)y=sinx在一象限單調(diào)遞增;
④y=tanx在其定義域內(nèi)為單調(diào)增函數(shù).
其中正確的命題序號(hào)為
分析:對(duì)于①根據(jù)函數(shù)y=f(a+x)與函數(shù)y=f(b-x)的圖象關(guān)于直線x=
b-a
2
對(duì)稱.得函數(shù)y=f(x+2)的圖象與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱,從而進(jìn)行判斷.
②結(jié)合極值的定義可知,除了要求f′(x0)=0外,還的要求在兩側(cè)有單調(diào)性的改變(或?qū)Ш瘮?shù)有正負(fù)變化),通過反例可知②不成立.
③y=sinx在第一象限有增有減.
④由正切函數(shù)的單調(diào)性可得④不正確.
解答:解:①因?yàn)楹瘮?shù)y=f(a+x)與函數(shù)y=f(b-x)的圖象關(guān)于直線x=
b-a
2
對(duì)稱
所以函數(shù)y=f(x+2)的圖象與函數(shù)y=f(2-x)的圖象關(guān)于直線x=
2-(-2)
2
=2對(duì)稱.①正確;
對(duì)于②,如f(x)=x3,f′(x)=3x2,f′(x)|x=0=0,但x=0不是函數(shù)的極值點(diǎn).
所以f′(x0)=0是x0為函數(shù)y=f(x)的極值點(diǎn)的必要不充分條件,故②不正確;
③y=sinx在第一象限有增有減,故③是假命題.
④由函數(shù)y=tanx的圖象可得,它在每一個(gè)開區(qū)間(-
π
2
,
π
2
),k∈Z上都是增函數(shù),但在它的定義域內(nèi)不是增函數(shù),故④不正確.
故答案為:①.
點(diǎn)評(píng):本題考查命題的真假判斷,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意函數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對(duì)稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域?yàn)閇-1,
2
2
]

③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個(gè)非零實(shí)數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時(shí)函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=2x為R上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=sin2x為R上的“A高調(diào)函數(shù)”;
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實(shí)數(shù)m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);        ②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數(shù)y=sin(x+
2
)
是偶函數(shù).
其中正確的命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②函數(shù)y=sinx+cosx的最大值為
3
2

③函數(shù)y=tanx在第一象限內(nèi)是增函數(shù);
④函數(shù)y=sin(2x+
π
2
)
的圖象關(guān)于直線x=
π
12
成軸對(duì)稱圖形.
其中正確的命題序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案