【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的中位數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則x+y的值為( )
A.168
B.169
C.8
D.9
【答案】D
【解析】解:甲班學(xué)生成績(jī)的中位數(shù)是80+x=83,得x=3;
由莖葉圖可知乙班學(xué)生的總分為70+80×3+90×3+(6+1+1+y+1+1+6)=596+y,
又乙班學(xué)生的平均分是86,
總分又等于86×7=602.所以y=6,
∴x+y=9.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解莖葉圖(莖葉圖又稱(chēng)“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣,0)和B(,0),動(dòng)點(diǎn)C到A、B兩點(diǎn)的距離之差的絕對(duì)值為2.
(1)求點(diǎn)C的軌跡方程;
(2)點(diǎn)C的軌跡與經(jīng)過(guò)點(diǎn)(2,0)且斜率為1的直線交于D、E兩點(diǎn),求線段DE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB=BC=CA=AP=2,G是△ABC重心,E是線段PC上一點(diǎn),且CE=λCP.
(1)當(dāng)EG∥平面PAB時(shí),求λ的值;
(2)當(dāng)直線CP與平面ABE所成角的正弦值為時(shí),求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n2+2n;數(shù)列{bn}是公比大于1的等比數(shù)列,且滿足b1+b4=9,b2b3=8.
(Ⅰ)分別求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=(﹣1)nSn+anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖是函數(shù)y=Asin(ωx+φ)(x∈R)在區(qū)間 上的圖象,為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍,縱坐標(biāo)不變
B.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
C.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍,縱坐標(biāo)不變
D.向左平移 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱(chēng)點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.
某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.給定函數(shù) ,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算
= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=4,AB=4 ,∠CDA=120°,點(diǎn)N在線段PB上,且PN=2.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com