【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PAAC,AB=BC=CA=AP=2,G是△ABC重心,E是線段PC上一點,且CE=λCP.

(1)當EG∥平面PAB時,求λ的值;

(2)當直線CP與平面ABE所成角的正弦值為時,求λ的值.

【答案】(1);(2).

【解析】

(1)取AB的中點D,連結(jié)PD,CD,根據(jù)線面平行的性質(zhì)可得EG∥PD,從而得出λ的值;

(2)建立空間坐標系,求出平面ABE的法向量,根據(jù)夾角公式得出λ的值.

(1)取AB的中點D,連結(jié)PD,CD,

AB=BC=AC,G是△ABC重心,

GCD的三等分點,且CG=CD,

EG∥平面PAB,EG平面PCD,平面PCD∩平面PAB=PD,

EGPD,

,即λ=

(2)以A為坐標原點,以AC,APy軸,z軸作空間直角坐標系

A﹣xyz,如圖所示:

A(0,0,0),B(,1,0),C(0,2,0),

P(0,0,2),E(0,2﹣2λ,2λ),

=(0,﹣2,2),=(,1,0),=(0,2﹣2λ,2λ),

設(shè)平面ABE的法向量為=(x,y,z),則, =0,

,令x=1可得,y=﹣,z=

=(1,﹣,),

cos===,

∴當直線CP與平面ABE所成角的正弦值為時, =

2=,即28λ2﹣24λ+5=0.

解得λ=λ=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a,b是正奇數(shù),數(shù)列{cn}(n∈N*)定義如下:c1=a,c2=b,對任意n≥3,cn是cn1+cn2的最大奇約數(shù).數(shù)列{cn}中的所有項構(gòu)成集合A.
(1)若a=9,b=15,寫出集合A;
(2)對k≥1,令dk=max{c2k , c2k1}(max{p,q}表示p,q中的較大值),求證:dk+1≤dk;
(3)證明集合A是有限集,并寫出集合A中的最小數(shù).】

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線被圓所截得的弦的中點為P5,3).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中內(nèi)動點P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線y=﹣2的距離小1.
(1)求動點P的軌跡方程;
(2)設(shè)點P的軌跡為曲線E,過點F的直線l的斜率為k,直線l交曲線E于A,B兩點,交圓F于C,D兩點(A,C兩點相鄰).
①若 =t ,當t∈[1,2]時,求k的取值范圍;
②過A,B兩點分別作曲線E的切線l1 , l2 , 兩切線交于點N,求△ACN與△BDN面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分15如圖,在四棱錐,平面PAD平面ABCD, ,E是BD的中點

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學生成績的中位數(shù)是83,乙班學生成績的平均數(shù)是86,則x+y的值為(

A.168
B.169
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥CD,AD∥BC,AD=3,BC=2AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
(Ⅰ)若BE= ,在折疊后的線段AD上是否存在一點P,且 ,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,說明理由;
(Ⅱ)求三棱錐A﹣CDF的體積的最大值,并求此時二面角E﹣AC﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點.
(I)求證:B1E⊥AD1;
(Ⅱ)若CD= a,是否存在這樣的E點,使得AD1與平面B1AE成45°的角?說明理由.

查看答案和解析>>

同步練習冊答案