【題目】某公司的兩個(gè)部門招聘工作人員,應(yīng)聘者從 T1、T2兩組試題中選擇一組參加測(cè)試,成績(jī)合格者可簽約.甲、乙、丙、丁四人參加應(yīng)聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績(jī)合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績(jī)都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數(shù)為 X,求 X的分布列和數(shù)學(xué)期望EX.
【答案】
(1)解:分別記事件甲、乙、丙、丁考試合格為 A,B,C,D.
由題意知 A,B,C,D相互獨(dú)立,且 , .
記事件“丙、丁未簽約”為F,
由事件的獨(dú)立性和互斥性得:
P(F)=1﹣P(CD)
=
(2)解:X的所有可能取值為0,1,2,3,4.
,
,
,
,
.
所以,X的分布列是:
X | 0 | 1 | 2 | 3 | 4 |
P |
X的數(shù)學(xué)期望
【解析】(1)分別記事件甲、乙、丙、丁考試合格為 A,B,C,D.由題意知 A,B,C,D相互獨(dú)立,且 , .記事件“丙、丁未簽約”為F,由事件的獨(dú)立性和互斥性得能求出丙、丁未簽約的概率.(2) X的所有可能取值為0,1,2,3,4,分別求出相應(yīng)在的概率,由此能求出X的分布列和X的數(shù)學(xué)期望.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0, <φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為 ,則f(﹣1)=( )
A.﹣2
B.2
C.-
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓: 的離心率為, 分別為橢圓的左、右頂點(diǎn), 為右焦點(diǎn),直線與的交點(diǎn)到軸的距離為,過(guò)點(diǎn)作軸的垂線, 為上異于點(diǎn)的一點(diǎn),以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個(gè)交點(diǎn)為,證明:直線與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品最近30天的價(jià)格f(t)(元)與時(shí)間t滿足關(guān)系式:f(t)= ,且知銷售量g(t)與時(shí)間t滿足關(guān)系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】來(lái)自某校一班和二班的共計(jì)9名學(xué)生志愿服務(wù)者被隨機(jī)平均分配到運(yùn)送礦泉水、清掃衛(wèi)生、維持秩序這三個(gè)崗位服務(wù),且運(yùn)送礦泉水崗位至少有一名一班志愿者的概率是.
(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(Ⅱ)設(shè)隨機(jī)變量為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市公租房的房源位于A、B、C三個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,求該市的任4位申請(qǐng)人中:
(1)恰有2人申請(qǐng)A片區(qū)房源的概率;
(2)申請(qǐng)的房源所在片區(qū)的個(gè)數(shù)的ξ分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱中, 底面,四邊形是邊長(zhǎng)為的菱形, 分別是和的中點(diǎn),
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,(a∈R)
(1)若函數(shù)f(x)在點(diǎn)區(qū)間[e,+∞]處上為增函數(shù),求a的取值范圍;
(2)若函數(shù)f(x)的圖象在點(diǎn)x=e(e為自然對(duì)數(shù)的底數(shù))處的切線斜率為3,且k∈Z時(shí),不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時(shí),證明:(mnn)m>(nmm)n .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com