16.已知P是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的焦點(diǎn).
(1)若∠F1PF2=90°,求△PF1F2的面積;
(2)求|PF1|•|PF2|的最大值.

分析 (1)設(shè)|PF1|=m,|PF2|=n,由于∠F1PF2=90°,根據(jù)勾股定理與橢圓的定義可得:$\left\{\begin{array}{l}{m+n=10}\\{{m}^{2}+{n}^{2}=64}\end{array}\right.$,解出mn即可.
(2)設(shè)|PF1|=m,|PF2|=n,則m+n=10,利用基本不等式的性質(zhì)即可得出.

解答 解:(1)c=$\sqrt{25-9}$=4,可得F1(-4,0),F(xiàn)2(4,0).
設(shè)|PF1|=m,|PF2|=n,
∵∠F1PF2=90°,
則$\left\{\begin{array}{l}{m+n=10}\\{{m}^{2}+{n}^{2}=64}\end{array}\right.$,化為mn=18.
∴△PF1F2的面積S=$\frac{1}{2}$mn=9.
(2)設(shè)|PF1|=m,|PF2|=n,
則m+n=10,
∴10$≥2\sqrt{mn}$,化為mn≤25,當(dāng)且僅當(dāng)m=n=5時(shí)取等號(hào).
∴|PF1|•|PF2|的最大值為25.

點(diǎn)評(píng) 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、勾股定理、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+3log2(x+1)+m(m為常數(shù)),則m=0,f(-1)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=sin(2x+φ),(φ∈R),若f(x)≤|f($\frac{π}{6}$)|對(duì)x∈R恒成立,且f($\frac{π}{2}$)<f(π),對(duì)于結(jié)論:①f($\frac{π}{2}$)=-$\frac{1}{2}$;②f(x)是奇函數(shù);③f(x)的單調(diào)遞增區(qū)間是[kx-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z);④f($\frac{7π}{10}$)>f($\frac{π}{5}$),其中正確的是( 。
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(1)設(shè)數(shù)列{an}中,a1=2.a(chǎn)n+1=an+n+1.則通項(xiàng)an=$\frac{{n}^{2}+n+2}{2}$;
(2)數(shù)列{an}中,a1=1,an+1=3an+2,則它的一個(gè)通項(xiàng)公式為an=-1+2•3n-1;
(3)在數(shù)列{an}中.a(chǎn)1=1.前n項(xiàng)和Sn=$\frac{n+2}{3}{a}_{n}$.則{an} 的通項(xiàng)公式為an=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.與圓x2+y2-8x-4y+16=0相切,且在兩坐標(biāo)軸上的截距相等的直線有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=|sinx|的最小正周期T=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若角α的終邊與角$\frac{π}{3}$的終邊關(guān)于直線y=-x對(duì)稱,寫(xiě)出與角α+$\frac{π}{2}$終邊相同的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在直觀圖如圖中,四邊形O′A′B′C′為菱形且邊長(zhǎng)為2cm,則在xOy坐標(biāo)系中原四邊形OABC為矩形(填形狀),面積為8cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=$\frac{1}{{\sqrt{2-{{log}_2}(1-x)}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-3,+∞)B.$(-∞,\frac{1}{2})$C.(-3,1)D.(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案