【題目】拋物線的焦點為,準線為,是拋物線上的兩個動點,且滿足.設線段的中點上的投影為,則的最大值是 ( )

A. B. C. D.

【答案】B

【解析】

|AF|a,|BF|b,連接AFBF.由拋物線定義得2|MN|a+b,由余弦定理可得|AB|2=(a+b23ab,進而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.

|AF|a,|BF|b,連接AF、BF,

由拋物線定義,得|AF||AQ|,|BF||BP|,

在梯形ABPQ中,2|MN||AQ|+|BP|a+b

由余弦定理得,

|AB|2a2+b22abcos60°=a2+b2ab

配方得,|AB|2=(a+b23ab

又∵ab,

∴(a+b23ab≥(a+b2a+b2a+b2

得到|AB|a+b).

1,

的最大值為1

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為 , ,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.

(1)求審核過程中只通過兩道程序的概率;

(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心坐標,直線被圓截得弦長為.

1)求圓的方程;

2)從圓外一點向圓引切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)程為為參數(shù)),設直線的交點為,當變化時點的軌跡為曲線.

(1)求出曲線的普通方程;

(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,點為曲線的動點,求點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中, 分別是, 的中點, , 平面,且.

1)證明: 平面;

2)若, 為等邊三角形,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題:實數(shù)滿足 (其中),命題:實數(shù)滿足

(1)若,且為真命題,求實數(shù)的取值范圍.

(2)若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年是某市大力推進居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識”的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖所示:

(Ⅰ)估計該組數(shù)據(jù)的中位數(shù)、眾數(shù);

(Ⅱ)由頻率分布直方圖可以認為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的條件下,有關(guān)部門為此次參加問卷調(diào)査的市民制定如下獎勵方案:

(i)得分不低于μ可獲贈2次隨機話費,得分低于μ則只有1次;

(ii)每次贈送的隨機話費和對應概率如下:

贈送話費(單元:元)

10

20

概率

現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位元)為該市民參加.問卷調(diào)查獲贈的話費,求X的分布列和數(shù)學期望.

,

若ZN(μ,σ2),則P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,.

1)若,,,求的取值范圍;

2)若是公比為的等比數(shù)列,,,求的取值范圍;

3)若成等差數(shù)列,且,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (其中為常數(shù)且)在處取得極值.

(1)當時,求的極大值點和極小值點;

(2)若上的最大值為1,求的值.

查看答案和解析>>

同步練習冊答案