如圖所示,△PAB所在的平面α和四邊形AB所在的平面β互相垂直,AD⊥α,bc⊥α,AD=4,BC=8,AB=6,若tan∠ADP-2tan∠BCP=1,則動(dòng)點(diǎn)P在平面內(nèi)α的軌跡是(  )
A、橢圓的一部分
B、線(xiàn)段
C、雙曲線(xiàn)的一部分
D、以上都不是
考點(diǎn):雙曲線(xiàn)的定義,橢圓的定義
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:由tan∠ADP=
|AP|
4
,tan∠BCP=
|PB|
8
,以及tan∠ADP-2tan∠BCP=1,可得|PA|-|PB|=4,根據(jù)雙曲線(xiàn)的定義做出判斷.
解答: 解:由題意得,△ADP 和△BCP均為直角三角形,且tan∠ADP=
|AP|
4
,tan∠BCP=
|PB|
8

∵tan∠ADP-2tan∠BCP=1,∴|PA|-|PB|=4<|AB|=6,
故動(dòng)點(diǎn)P在平面α內(nèi)的軌跡是以A、B為焦點(diǎn)的雙曲線(xiàn)的一支,
故選C.
點(diǎn)評(píng):本題考查雙曲線(xiàn)的定義,直角三角形中的邊角關(guān)系,得到|PA|-|PB|=4<|AB|是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=3,(n+1)an=(n-1)an-1,Sn是前n項(xiàng)和,求
lim
n→+∞
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)y=f(x),x∈D(D為定義域)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離為函數(shù)的y=f(x),x∈D的模.若模存在最大值,則此最大值稱(chēng)之為函數(shù)y=f(x),x∈D的長(zhǎng)距;若模存在最小值,則此最小值稱(chēng)之為函數(shù)y=f(x),x∈D的短距.
(1)分別判斷函數(shù)f1(x)=
1
x
與f2(x)=
-x2-4x+5
是否存在長(zhǎng)距與短距,若存在,請(qǐng)求出;
(2)對(duì)于任意x∈[1,2]是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
2x|x-a|
的短距不小于2,若存在,請(qǐng)求出a的取值范圍;不存在,則說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=2an-2n+1(n∈N*).
(1)求a1的值,并證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)設(shè)bn=log2
an
n+1
,數(shù)列{
1
bn
}的前n項(xiàng)和為Bn,若存在整數(shù)m,使對(duì)任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=g(x)+3,x∈[-t,t](t>0),其中g(shù)(x)是奇函數(shù),若函數(shù)f(x)的最大值是M,最小值是m,則M+m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中滿(mǎn)足a1=15,
an+1-an
n
=2,則
an
n
的最小值為(  )
A、10
B、2
15
-1
C、9
D、
27
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知AB,BC是⊙O的兩條弦,AO⊥BC,AB=2,BC=2
3
,則⊙O的半徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x與y呈相關(guān)關(guān)系,且由觀測(cè)數(shù)據(jù)得到的樣本數(shù)據(jù)散點(diǎn)圖如圖所示,則由該觀測(cè)數(shù)據(jù)算得的回歸方程可能是(  )
A、
?
y
=-1.314x+1.520
B、
?
y
=1.314x+1.520
C、
?
y
=1.314x-1.520
D、
?
y
=-1.314x-1.520

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題p:3是奇數(shù),q:3是最小的素?cái)?shù),則p且q,p或q,非p,非q中真命題的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案