f(n)=1+數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式(n∈N*),經(jīng)計(jì)算得f(2)=數(shù)學(xué)公式,f(4)>2,f(8)>數(shù)學(xué)公式,f(16)>3,f(32)>數(shù)學(xué)公式.推測(cè):當(dāng)n≥2時(shí),有


  1. A.
    f(2n-1)>數(shù)學(xué)公式
  2. B.
    f(2n)>數(shù)學(xué)公式
  3. C.
    f(2n)>數(shù)學(xué)公式
  4. D.
    f(2n-1)>數(shù)學(xué)公式
B
分析:根據(jù)已知中的等式:f(2)=,f(4)>2,f(8)>,f(16)>3,…,我們分析等式左邊數(shù)的變化規(guī)律及等式兩邊數(shù)的關(guān)系,歸納推斷后,即可得到答案.
解答:觀察已知中等式:
得 f(2)=,
f(4)>2,
f(8)>,
f(16)>3,
…,
則f(2n)≥(n∈N*
故選B.
點(diǎn)評(píng):歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=1+
1
2
+
1
3
…+
1
n
(n∈N*)
,經(jīng)計(jì)算得f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(16)>3,f(32)>
7
2
,推測(cè)當(dāng)n≥2時(shí),有f(2n)>
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*).
求證:f(1)+f(2)+…+f(n-1)=n•[f(n)-1](n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N+,n≥2),經(jīng)計(jì)算得f(4)>2,f(8)
5
2
,f(16)>3,f(32)
7
2
,由此可推得一般性結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+L+
1
n
(n∈N*),用數(shù)學(xué)歸納法證明f(2n)>
n
2
時(shí),f(2k+1)-f(2k)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于正整數(shù)n的函數(shù)f(n)=1•22+2•32+…n(n+1)2
(1)求f(1),f(2),f(3);
(2)是否存在常數(shù)a,b,c使得f(n)=
n(n+1)12
(an2+bn+c)
對(duì)一切自然數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案