設(shè)a∈R,函數(shù)f(x)=ex+a•e-x的導(dǎo)函數(shù)是f′(x),且f′(x)是奇函數(shù).若曲線y=f(x)的一條切線的斜率是,則切點(diǎn)的橫坐標(biāo)為( )
A.ln2
B.-ln2
C.
D.
【答案】分析:已知切線的斜率,要求切點(diǎn)的橫坐標(biāo)必須先求出切線的方程,
我們可從奇函數(shù)入手求出切線的方程.
解答:解:
對(duì)f(x)=ex+a•e-x求導(dǎo)得
f′(x)=ex-ae-x
又f′(x)是奇函數(shù),故
f′(0)=1-a=0
解得a=1,故有
f′(x)=ex-e-x,
設(shè)切點(diǎn)為(x,y),則

(舍去),
得x=ln2.
點(diǎn)評(píng):熟悉奇函數(shù)的性質(zhì)是求解此題的關(guān)鍵,奇函數(shù)一定過(guò)原點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=ax3-3x2
(1)若x=2是函數(shù)y=f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=exf(x)在[0,2]上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、設(shè)a∈R,函數(shù)f(x)=2x3+(6-3a)x2-12ax+2.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=ax3-3x2,x=2是函數(shù)y=f(x)的極值點(diǎn).
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是f′(x),若f′(x)是偶函數(shù),則以下結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,函數(shù)f(x)=ex-ae-x的導(dǎo)函數(shù)為f′(x),且f′(x)是奇函數(shù),則a=( 。
A、0B、1C、2D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案