【題目】設(shè)常數(shù)a使方程sinx+ cosx=a在閉區(qū)間[0,2π]上恰有三個解x1 , x2 , x3 , 則x1+x2+x3=

【答案】
【解析】解:sinx+ cosx=2( sinx+ cosx)=2sin(x+ )=a,
如圖方程的解即為直線與三角函數(shù)圖象的交點,在[0,2π]上,當(dāng)a= 時,直線與三角函數(shù)圖象恰有三個交點,
令sin(x+ )= ,x+ =2kπ+ ,即x=2kπ,或x+ =2kπ+ ,即x=2kπ+
∴此時x1=0,x2= ,x3=2π,
∴x1+x2+x3=0+ +2π=
所以答案是:

【考點精析】認(rèn)真審題,首先需要了解兩角和與差的正弦公式(兩角和與差的正弦公式:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某二手車交易市場對某型號的二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進(jìn)行整理,得到如下的對應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價

16

13

9.5

7

4.5

(1)試求關(guān)于的回歸直線方程:(參考公式:, .)

(2)已知每輛該型號汽車的收購價格為萬元,根據(jù)(1)中所求的回歸方程,預(yù)測為何值時,銷售一輛該型號汽車所獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中混裝著9個大小相同的球(編號不同),其中5只白球,4只紅球,為了把紅球與白球區(qū)分開來,采取逐只抽取檢查,若恰好經(jīng)過5次抽取檢查,正好把所有白球和紅球區(qū)分出來了,則這樣的抽取方式共有__________種(用數(shù)字作答) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐A﹣BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線段AD,AB的中點,P為線段BC上的點,且MN⊥NP.

(1)證明:P是線段BC的中點;
(2)求二面角A﹣NP﹣M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次函數(shù),分別從集合中隨機取一個數(shù)得到數(shù)對

1)若, ,求函數(shù)有零點的概率;

2)若, ,求函數(shù)在區(qū)間上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】身體素質(zhì)拓展訓(xùn)練中,人從豎直墻壁的頂點A沿光滑桿自由下滑到傾斜的木板上(人可看作質(zhì)點),若木板的傾斜角不同,人沿著三條不同路徑ABAC、AD滑到木板上的時間分別為t1、t2、t3,若已知AB、AC、AD與板的夾角分別為70o、90o105o,則(

A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能確定t1、t2t3之間的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法總數(shù).

(1)全體排成一行,其中男生必須排在一起;

(2)全體排成一行,男、女各不相鄰;

(3)全體排成一行,其中甲不在最左邊,乙不在最右邊;

(4)全體排成一行,其中甲、乙、丙三人從左至右的順序不變.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為

(I)求橢圓的方程;

(Ⅱ)過橢圓的右頂點做相互垂直的兩條直線,分別交橢圓、、異于點),問直線是否通過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用五點法畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);

2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象;

3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案