本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.
【答案】分析:(1)求出M1,可得點P(2,1)在T1作用下的點Q的坐標.設(shè)變換為M,則M=M2M1=,設(shè)(x,y)是變換后曲線上的任意一點,與之對應(yīng)的變換前的點是(x,y),根據(jù) =,可得x=x-y,x=y,再由
又y=x2,得到 y-x=y2
(2)設(shè)動點P的極坐標(ρ,θ),點M的極坐標為(ρ,θ),則ρρ=12,可得ρ=3cosθ (扣除極點).
根據(jù)P的軌跡是以(1.5,0)為圓心,以1.5為半徑的圓,得RP的最小值為1.
(3)由|6x+a|≥4 解得x≥,或 x≤,從而 =,=-,解得 a=1,求出f(x)
的解析式,求出f(x)+f(x-1)的最小值為12,可得b<12.
解答:(1)解:(Ⅰ),點P(2,1)在T1作用下的點Q的坐標為(-1,2).…4分
(II)設(shè)變換為M,則M=M2M1=,設(shè)(x,y)是變換后曲線上的任意一點,與之對應(yīng)的變換前的點是(x,y),
則有 =,∴x=x-y,x=y.
又y=x2,∴y-x=y2
(2)解:(Ⅰ)設(shè)動點P的極坐標(ρ,θ),點M的極坐標為(ρ,θ),則ρρ=12.
又ρcosθ=4,∴ρ=3cosθ (扣除極點).
(Ⅱ)由(Ⅰ)知,動點P的軌跡是以(1.5,0)為圓心,以1.5為半徑的圓,故RP的最小值為1.
(3)解:由|6x+a|≥4 解得x≥,或 x≤,∴==-,
解得 a=1. 此時,f(x)=|6x+1|,f(x+1)=|6x+7|,f(x-1)=|6x-5|.
f(x)+f(x-1)=|6x+7|+|6x-5|≥|(6x+7)-(6x-5)|=12,故b<12.
點評:本題考查矩陣運算,簡單曲線的極坐標方程,函數(shù)的恒成立問題,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=
1
1
,并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,已知曲線C的參數(shù)方程是
x=2+2sinα
y=2cosα
(α是參數(shù)).
現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標系,寫出曲線C的極坐標方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省福州市高三3月質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量,并且矩陣M對應(yīng)的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,已知曲線C的參數(shù)方程是(α是參數(shù)).
現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標系,寫出曲線C的極坐標方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

同步練習冊答案