【題目】如圖,在三棱柱中,側(cè)面為棱長(zhǎng)為2的菱形,,,

1)求證:面

2)求直線(xiàn)與面所成角.

【答案】1)見(jiàn)解析(2

【解析】

1)連結(jié)于點(diǎn),連結(jié),通過(guò)菱形的性質(zhì)得出,得出為等邊三角形,根據(jù)三邊關(guān)系得出,則,而,根據(jù)線(xiàn)面垂直的判定定理得出平面,而平面,從而可證出平面平面;

2)由面面垂直的性質(zhì)得出,則即為與面所成角,通過(guò)幾何法求得,即可求出直線(xiàn)與面所成角.

解:(1)證明:連結(jié)于點(diǎn),連結(jié),

因?yàn)?/span>為菱形,,

所以,

為等邊三角形,即可得,

,

所以在中,,

,即,

又知,

平面,平面

所以平面,平面,

即平面平面.

2)由(1)知平面平面,

因?yàn)?/span>,平面平面,

所以

即為與面所成角,

中,,,

,

所以直線(xiàn)與面所成角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐PABCD中,PC⊥底面ABCD,PCCD2EAB的中點(diǎn),底面四邊形ABCD滿(mǎn)足∠ADC=∠DCB90°AD1,BC3

)求證:平面PDE⊥平面PAC

)求直線(xiàn)PC與平面PDE所成角的正弦值;

)求二面角DPEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為紀(jì)念五四運(yùn)動(dòng)”100周年,某校團(tuán)委舉辦了中國(guó)共產(chǎn)主義青年團(tuán)知識(shí)宣講活動(dòng)活動(dòng)結(jié)束后,校團(tuán)委對(duì)甲、乙兩組各10名團(tuán)員進(jìn)行志愿服務(wù)次數(shù)調(diào)查,次數(shù)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以表示.

1)若甲組服務(wù)次數(shù)的平均值不小于乙組服務(wù)次數(shù)的平均值,求圖中所有可能的取值;

2)團(tuán)委決定對(duì)甲、乙兩組中服務(wù)次數(shù)超過(guò)15次的團(tuán)員授予優(yōu)秀志愿者稱(chēng)號(hào)設(shè),現(xiàn)從所有優(yōu)秀志愿者里任取3人,求其中乙組的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20194月,北京世界園藝博覽會(huì)開(kāi)幕,為了保障園藝博覽會(huì)安全順利地進(jìn)行,某部門(mén)將5個(gè)安保小組全部安排到指定的三個(gè)不同區(qū)域內(nèi)值勤,則每個(gè)區(qū)域至少有一個(gè)安保小組的排法有(

A.150B.240C.300D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)(萬(wàn)元)有如下統(tǒng)計(jì)資料:

若由資料知,對(duì)呈線(xiàn)性相關(guān)關(guān)系.

1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程;

2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?(精確到兩位小數(shù));

3)計(jì)算第2年和第6年的殘差.

附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)站每天上午發(fā)出兩班客車(chē),每班客車(chē)發(fā)車(chē)時(shí)刻和發(fā)車(chē)概率如下:第一班車(chē):在8:00,8:208:40發(fā)車(chē)的概率分別為,,;第二班車(chē):在9:009:20,9:40發(fā)車(chē)的概率分別為,,.兩班車(chē)發(fā)車(chē)時(shí)刻是相互獨(dú)立的,一位旅客8:10到達(dá)車(chē)站乘車(chē).求:

(1)該旅客乘第一班車(chē)的概率;

(2)該旅客候車(chē)時(shí)間(單位:分鐘)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)軸交于橢圓的右焦點(diǎn)為橢圓的左焦點(diǎn),橢圓的利息率為,拋物線(xiàn)與橢圓交于軸上方一點(diǎn),連接并延長(zhǎng)其交拋物線(xiàn)于點(diǎn)為拋物線(xiàn)上一動(dòng)點(diǎn),且在,之間移動(dòng).

1)當(dāng)取最小值時(shí),求的值;

2)若的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)的面積取最大值時(shí),求面積最大值及此時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項(xiàng)能力(指標(biāo)值滿(mǎn)分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達(dá)圖,圖中點(diǎn)A表示甲的創(chuàng)造力指標(biāo)值為4,點(diǎn)B表示乙的空間能力指標(biāo)值為3,則下面敘述正確的是

A. 乙的記憶能力優(yōu)于甲的記憶能力

B. 乙的創(chuàng)造力優(yōu)于觀察能力

C. 甲的六大能力整體水平優(yōu)于乙

D. 甲的六大能力中記憶能力最差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著中美貿(mào)易戰(zhàn)的不斷升級(jí),越來(lái)越多的國(guó)內(nèi)科技巨頭加大了科技研發(fā)投入的力度.中華技術(shù)有限公司擬對(duì)麒麟手機(jī)芯片進(jìn)行科技升級(jí),根據(jù)市場(chǎng)調(diào)研與模擬,得到科技升級(jí)投入x(億元與科技升級(jí)直接收益y(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

x

2

3

4

6

8

10

13

21

22

23

24

25

y

13

22

31

42

50

56

58

68.5

68

67.5

66

66

當(dāng)時(shí),建立了yx的兩個(gè)回歸模型:模型①:;模型②:;當(dāng)時(shí),確定yx滿(mǎn)足的線(xiàn)性回歸方程為

1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時(shí)模型①、②的相關(guān)指數(shù)的大小,并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)對(duì)麒麟手機(jī)芯片科技升級(jí)的投入為17億元時(shí)的直接收益.

回歸模型

模型①

模型②

回歸方程

182.4

79.2

(附:刻畫(huà)回歸效果的相關(guān)指數(shù)

2)為鼓勵(lì)科技創(chuàng)新,當(dāng)科技升級(jí)的投入不少于20億元時(shí),國(guó)家給予公司補(bǔ)貼5億元,以回歸方程為預(yù)測(cè)依據(jù),比較科技升級(jí)投入17億元與20億元時(shí)公司實(shí)際收益的大小.

(附:用最小二乘法求線(xiàn)性回歸方程的系數(shù):,

3)科技升級(jí)后,麒麟芯片的效率X大幅提高,經(jīng)實(shí)際試驗(yàn)得X大致服從正態(tài)分布.公司對(duì)科技升級(jí)團(tuán)隊(duì)的獎(jiǎng)勵(lì)方案如下:若芯片的效率不超過(guò)50%,不予獎(jiǎng)勵(lì):若芯片的效率超過(guò)50%,但不超過(guò)53%,每部芯片獎(jiǎng)勵(lì)2元;若芯片的效率超過(guò)53%,每部芯片獎(jiǎng)勵(lì)4元記為每部芯片獲得的獎(jiǎng)勵(lì),求(精確到0.01).

(附:若隨機(jī)變量,則,

查看答案和解析>>

同步練習(xí)冊(cè)答案