【題目】已知橢圓 的離心率,過(guò)橢圓的左焦點(diǎn)且傾斜角為的直線與圓相交所得弦的長(zhǎng)度為1.

(1)求橢圓的方程;

(2)若直線交橢圓于不同的兩點(diǎn),設(shè) ,其中為坐標(biāo)原點(diǎn).當(dāng)以線段為直徑的圓恰好過(guò)點(diǎn)時(shí),求證: 的面積為定值,并求出該定值.

【答案】(1;(2)定值為,證明見(jiàn)解析.

【解析】試題分析:(I)借助題設(shè)條件建立方程組求解;(II)依據(jù)題設(shè)運(yùn)用直線與橢圓的位置關(guān)系進(jìn)行探求.

試題解析:

)由題意知,即. ①

因?yàn)橹本過(guò)左焦點(diǎn)且傾斜角為30°可得直線方程為

又因?yàn)橹本與圓相交弦長(zhǎng)為1,

所以圓心到直線距離,

再由勾股定理得:

①②聯(lián)立可知

即橢圓方程為

)()當(dāng)直線的斜率不存在時(shí),,因?yàn)橐跃段為直徑的圓過(guò)原點(diǎn),所以,即,

所以

,

又因?yàn)辄c(diǎn)在橢圓上,所以,

代入得:

所以.

)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

,

因?yàn)榻挥诓煌瑑牲c(diǎn),所以,

,即

由韋達(dá)定理得: ,

由題意知,又

所以,

代入整理得.

點(diǎn)到直線的距離,

所以

,

代入,

綜上,三角形的面積為定值1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),截至2016年底全國(guó)微信注冊(cè)用戶數(shù)量已經(jīng)突破9.27億.為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:

(1)求,的值及樣本中微信群個(gè)數(shù)超過(guò)12的概率;

(2)若從這100位同學(xué)中隨機(jī)抽取2人,求這2人中恰有1人微信群個(gè)數(shù)超過(guò)12的概率;

(3)以(1)中的頻率作為概率,若從全市大學(xué)生中隨機(jī)抽取3人,記表示抽到的是微信群個(gè)數(shù)超過(guò)12的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)判斷點(diǎn)與直線的位置關(guān)系并說(shuō)明理由;

(Ⅱ)設(shè)直線與曲線的兩個(gè)交點(diǎn)分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1, CD1,B1C,現(xiàn)有以下幾個(gè)結(jié)論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結(jié)論的序號(hào)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)的出現(xiàn)方便了人們的出行,深受我市居民的喜愛(ài).為調(diào)查某校大學(xué)生對(duì)共享單車(chē)的使用情況,從該校8000名學(xué)生中按年級(jí)用分層抽樣的方式隨機(jī)抽取了100位同學(xué)進(jìn)行調(diào)查,得到這100名同學(xué)每周使用共享單車(chē)的時(shí)間(單位:小時(shí))如表:

使用時(shí)間

人數(shù)

10

40

25

20

5

(Ⅰ)已知該校大一學(xué)生由2400人,求抽取的100名學(xué)生中大一學(xué)生人數(shù);

(Ⅱ)作出這些數(shù)據(jù)的頻率分布直方圖;

(Ⅲ)估計(jì)該校大學(xué)生每周使用共享單車(chē)的平均時(shí)間(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖像是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù),,

(1)若函數(shù)的圖象過(guò)點(diǎn),且方程有且只有一個(gè)實(shí)根,求的表達(dá)式;

(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于下列命題: ①若函數(shù)y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y= 的定義域是{x|x>2},則它的值域是{y|y≤ };
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數(shù)y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號(hào)是 . (注:把你認(rèn)為不正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用、、三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表:

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案