如果橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上存在一點(diǎn)P,使點(diǎn)P到左準(zhǔn)線(xiàn)的距離與它到右焦點(diǎn)的距離相等,那么橢圓的離心率的范圍是( 。
A.(0,
2
-1]
B.[
2
-1,1)
C.(0,
3
-1]
D.[
3
-1,1)
設(shè)它到右焦點(diǎn)的距離是m,則到左準(zhǔn)線(xiàn)距離m,
它到左焦點(diǎn)的距離是2a-m,
由橢圓第二定義可知
2a-m
m
=e=
c
a
,m=
2a2
a+c

對(duì)于到左準(zhǔn)線(xiàn)距離m,
a2
c
-a
≤m≤
a2
c
+a
∴a2-c2≤2ac≤(a+c)22ac≤(c+a)2恒成立
a2-c2≤2ac
∴c2+2ac-a2≤0   
兩邊同時(shí)除以a2得e2+2e-1≥0
解得e≥
2
-1
,∵橢圓離心率小于1
2
-1
≤e<1
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”.
(1)若橢圓C過(guò)點(diǎn)(
5
,0)
,且焦距為4,求“伴隨圓”的方程;
(2)如果直線(xiàn)x+y=3
2
與橢圓C的“伴隨圓”有且只有一個(gè)交點(diǎn),那么請(qǐng)你畫(huà)出動(dòng)點(diǎn)Q(a,b)軌跡的大致圖形;
(3)已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2
2
,0),橢圓C上一動(dòng)點(diǎn)M1滿(mǎn)足|
M1F1
|+|
M1F
2
|=2
3
.設(shè)點(diǎn)P是橢圓C的“伴隨圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)l1、l2使得l1、l2與橢圓C都各只有一個(gè)交點(diǎn),且l1、l2分別交其“伴隨圓”于點(diǎn)M、N.當(dāng)P為“伴隨圓”與y軸正半軸的交點(diǎn)時(shí),求l1與l2的方程,并求線(xiàn)段|
MN
|
的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖北模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上有一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為3+2
2
3-2
2

(1)求橢圓的方程;
(2)如果直線(xiàn)x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線(xiàn)CA與直線(xiàn)BD的交點(diǎn)K必在一條確定的雙曲線(xiàn)上;
(3)過(guò)點(diǎn)Q(1,0)作直線(xiàn)l(與x軸不垂直)與橢圓交于M、N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MQ
,
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楚雄州模擬)已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)為B(0,4),離心率e=
5
5
,直線(xiàn)l交橢圓于M、N兩點(diǎn).
(1)若直線(xiàn)l的方程為y=x-4,求弦MN的長(zhǎng);
(2)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線(xiàn)l方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•大連二模)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若經(jīng)過(guò)點(diǎn)F1且與x軸、y軸不平行的直線(xiàn)與該橢圓交于A、B兩點(diǎn),則下列結(jié)論錯(cuò)誤的是
①④
①④
(把你認(rèn)為錯(cuò)誤的結(jié)論序號(hào)都寫(xiě)上).
①|(zhì)AB|的取值范圍是[
2b2
a
,2a);
②以AF1為直徑的圓與橢圓長(zhǎng)軸為直徑的圓相切;
③如果∠F1AF2的平分線(xiàn)與F1F2交于M點(diǎn),則橢圓的離心率等于
|MF1|
|AF1|
;
④△ABF2的面積最大值是a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線(xiàn)y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?
(3)如圖:直線(xiàn)l與兩個(gè)“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

查看答案和解析>>

同步練習(xí)冊(cè)答案