已知函數(shù)
(Ⅰ)當時,求曲線處的切線方程;
(Ⅱ)討論函數(shù)的單調性.
(Ⅰ)切線方程為;(Ⅱ)當時,上單調遞增;
時,、上單調遞增,在上單調遞減;
時,、上單調遞增,在上單調遞減.

試題分析:(Ⅰ)將代入得:,利用導數(shù)便可求得曲線在點處的切線方程;
(Ⅱ)求導得:.因為,所以只需考查的符號,要考查的符號,就需要比較的大小.由得:,所以;;由此分類討論,便可得函數(shù)的單調性.
試題解析:(Ⅰ)當時,,則切點為
,則切線方程為;
(Ⅱ).
時, ,所以上單調遞增;
時,,由得:,所以、上單調遞增,在上單調遞減;
時,,得:,所以、上單調遞增,在上單調遞減.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)若,求最大值;
(2)已知正數(shù),滿足.求證:;
(3)已知,正數(shù)滿足.證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)若,求的單調區(qū)間;
(2)若當,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),且.
(1)求函數(shù),的表達式;
(2)當時,不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)yf(x),其導函數(shù)yf′(x)的圖象如圖所示,則yf(x) (  ).
A.在(-∞,0)上為減函數(shù)
B.在x=0處取極小值
C.在(4,+∞)上為減函數(shù)
D.在x=2處取極大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的圖象如圖所示(其中是函數(shù)的導函數(shù))下面四個圖象中,的圖象大致是    (  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程x3-3x=k有3個不等的實根, 則常數(shù)k的取值范圍是      

查看答案和解析>>

同步練習冊答案