【題目】如圖四邊形ABCD,AB=BD=DA=2.BC=CD= ,現(xiàn)將△ABD沿BD折起,使二面角A﹣BD﹣C的大小在[ ],則直線AB與CD所成角的余弦值取值范圍是(
A.[0, ]∪( ,1)
B.[ ]
C.[0, ]
D.[0, ]

【答案】D
【解析】解:取BD中點(diǎn)O,連結(jié)AO,CO, ∵AB=BD=DA=2.BC=CD= ,∴CO⊥BD,AO⊥BD,且CO=1,AO= ,
∴∠AOC是二面角A﹣BD﹣C的平面角,
以O(shè)為原點(diǎn),OC為x軸,OD為y軸,
過(guò)點(diǎn)O作平面BCD的垂線為z軸,建立空間直角坐標(biāo)系,

B(0,﹣1,0),C(1,0,0),D(0,1,0),
設(shè)二面角A﹣BD﹣C的平面角為θ,則 ,
連AO、BO,則∠AOC=θ,A( ),
,
設(shè)AB、CD的夾角為α,
則cosα= = ,
,∴cos ,∴|1﹣ |∈[0, ].
∴cos
故選:D.
【考點(diǎn)精析】本題主要考查了異面直線及其所成的角的相關(guān)知識(shí)點(diǎn),需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(﹣3x)+1,則f(lg2)+f(lg)=( 。
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點(diǎn)E是PD的中點(diǎn).
(Ⅰ)求證:AC⊥PB;
(Ⅱ)求證:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點(diǎn).
(Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)求證:AQ∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F(xiàn)分別是AB,CD上的點(diǎn),EF∥BC,AE=x,G是BC的中點(diǎn),沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)當(dāng)x=2時(shí),①求證:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱錐D﹣FBC的體積是否可能等于幾何體ABE﹣FDC體積的一半?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.
(1)求a,b的值;
(2)設(shè)全集U=AUB,求(UA)U(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且BE⊥PD.
(1)求異面直線PA與CD所成的角的大;
(2)求證:BE⊥平面PCD;
(3)求二面角A﹣PD﹣B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=log4(4x+1)﹣mx是偶函數(shù).
(1)求m+n的值;
(2)設(shè)h(x)=f(x)+ x,若g(x)>h[log4(2a+1)]對(duì)任意x≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案