已知
a
=(1,2),
b
=(-3,2).
(1)求|2
a
-
b
|的值;
(2)若k
a
+2
b
與2
a
-4
b
垂直,求實(shí)數(shù)k的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(1)利用向量坐標(biāo)運(yùn)算和數(shù)量積的運(yùn)算性質(zhì)即可得出;
(2)利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:(1)2
a
-
b
=2(1,2)-(-3,2)=(5,2),∴|2
a
-
b
|=
52+22
=
29

(2)∵k
a
+2
b
與2
a
-4
b
垂直,
(k
a
+2
b
)•(2
a
-4
b
)=0
,
2k
a
2
+(4-4k)
a
b
-8
b
2
=0
,
10k+4-4k-8×13=0,k=
50
3
點(diǎn)評(píng):本題考查了向量坐標(biāo)運(yùn)算和數(shù)量積的運(yùn)算性質(zhì)、量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)=
ax2+bx+1
cx+d
(x≠0,a>1),且當(dāng)x>0時(shí),f(x)有最小值2
2
,又f(1)=3.
(1)求f(x)的表達(dá)式;
(2)正整數(shù)列{an}中,a1=
5
,
an+12
an
=f(an),求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)(2)中的數(shù)列{an},若g(x)=a12x+a22+x2+a32x3+…+an2xn(n∈N*),求函數(shù)g(x)在x=1處的導(dǎo)數(shù)g′(1),并比較2g′(1)與23n2-13n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)=ax+
b
x
+c的圖象經(jīng)過(guò)點(diǎn)A(1,1),B(2,-1).
(1)求函數(shù)f(x)的解析式;
(2)求證:函數(shù)f(x)在(0,+∞)上為減函數(shù);
(3)若|t-1|≤f(x)+2對(duì)x∈[-2,-1]∪[1,2]恒成立,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=2,求下列各式的值:
(1)
4sinα-2cosα
5sinα+3cosα
;        
(2)3sin2α+3sinαcosα-2cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為測(cè)量某塔AB的高度,在一幢與塔AB相距20m的樓頂D處測(cè)得塔頂A的仰角為30°,測(cè)得塔基B的俯角為45°,那么塔AB的高度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)M(-1,0),N(1,0),并且點(diǎn)P使
MP
MN
,
PM
PN
NM
NP
成公差小于0的等差數(shù)列,點(diǎn)P的軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(cosα,sinα),設(shè)
m
=
a
+t
b
(為實(shí)數(shù)).
(1)求|
a
-
b
|的最大值
(2)若
a
b
,問(wèn):是否存在實(shí)數(shù),使得向量
a
-
b
和向量
m
的夾角為
π
4
,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某個(gè)體服裝店經(jīng)營(yíng)各種服裝,在某周內(nèi)獲純利潤(rùn)y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表:
x3456789
y66697381899091
已知:
7
i=1
xi2
=280,
7
i=1
xiyi=3487.(
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

(1)求
x
y
;   
(2)畫(huà)出散點(diǎn)圖;
(3)觀察散點(diǎn)圖,若y與x線性相關(guān),請(qǐng)求出純利潤(rùn)y與每天銷售件數(shù)x之間的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=
x-1
},集合B={y|y=-x2+4x-1},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案