(本小題滿分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.
(1)若AB=AD=,直線PB與CD所成角為,
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大。
(2)若E為線段PC上一點,試確定E點的位置,使得平面EBD垂直于平面ABCD,并說明理由.
(1)(1)VP-ABCD=·PA·SABCD=a3.(2)二面角P-CD-B為450.
(2) 當點E在線段PC上,且滿足PE :EC=2 :1時,平面EBD垂直于平面ABCD.見解析。
【解析】
試題分析:
(1)∵AB∥CD,∴∠PBA是PB與CD所成角,
從而可以得到VP-ABCD=·PA·SABCD=a3,又因為 ∵AB⊥AD,CD∥AB∴CD⊥AD
又PA⊥底面ABCD∴∠PDA是二面角P-CD-B的平面角,進而解得。
(2) 當點E在線段PC上,且滿足PE :EC=2 :1時,平面EBD垂直于平面ABCD.
結合猜想,運用面面垂直判定定理得到。
(1)∵AB∥CD,∴∠PBA是PB與CD所成角,
即∠PBA=450 , ∴在直角△PAB中,PA=AB=a
(1)VP-ABCD=·PA·SABCD=a3.
(2)∵AB⊥AD,CD∥AB
∴CD⊥AD
又PA⊥底面ABCD
∴PA⊥CD
∴CD⊥平面PAD
∴CD⊥PD
∴∠PDA是二面角P-CD-B的平面角
在直角△PDA中,∵PA=AD=a
∴∠PDA=450
即二面角P-CD-B為450.
(2) 當點E在線段PC上,且滿足PE :EC=2 :1時,平面EBD垂直于平面ABCD.
理由如下:連AC、BD交于O點,連EO.
由△AOB∽△COD,且CD=2AB
∴CO=2AO
∴PE:EC=AO:CO =1:2
∴PA∥EO
∵PA⊥底面ABCD,
∴EO⊥底面ABCD.
又EO在平面EBD內,
∴平面EBD垂直于平面ABCD
考點:本題主要考查了空間中體積和二面角的求解,以及面面垂直的證明的綜合運用。
點評:解決該試題的關鍵熟練掌握幾何體的結構特征,進而得到空間中點、線、面的位置關系,結合有關定理進行證明即可,并且也有利于建立空間之間坐標系,利用向量的有關知識解決空間角與空間距離等問題.
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據(jù)市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com