【題目】商店出售茶壺和茶杯,茶壺定價(jià)每個(gè)20元,茶杯每個(gè)5元,該商店推出兩種優(yōu)惠辦法:(1)買(mǎi)一個(gè)茶壺贈(zèng)一個(gè)茶杯;(2)按總價(jià)的92%付款.

某顧客需購(gòu)買(mǎi)茶壺4個(gè),茶杯若干個(gè)(不少于4個(gè)),若購(gòu)買(mǎi)茶杯數(shù)x個(gè),付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買(mǎi)同樣多的茶杯時(shí),兩種辦法哪一種更優(yōu)惠。

【答案】當(dāng)購(gòu)買(mǎi)34只茶杯時(shí),兩法付款相同.

當(dāng)4x<34時(shí),優(yōu)惠辦法(1)省錢(qián),

當(dāng)x34時(shí),,優(yōu)惠辦法(2)省錢(qián).

【解析】

主要考查一次函數(shù)模型的應(yīng)用。解答此類(lèi)題目,注意遵循審清題意,設(shè)出變?cè),列出關(guān)系,解決問(wèn)題,寫(xiě)出結(jié)語(yǔ)(答)等步驟。分別計(jì)算,加以比較。

解:由優(yōu)惠辦法(1)可得函數(shù)關(guān)系為

=204+5(x-4)=5x+60(x4,且xN);

由優(yōu)惠辦法(2)可得=(5x+204)92%=4.6x+73.6(x4,且xN)

=0.4x-13.6(x4,且xN),令=0,得x=34.

所以,當(dāng)購(gòu)買(mǎi)34只茶杯時(shí),兩法付款相同.

當(dāng)4x<34時(shí),優(yōu)惠辦法(1)省錢(qián),

當(dāng)x34時(shí),,優(yōu)惠辦法(2)省錢(qián).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱的底面是正方形,的交點(diǎn),

。

(1)求證:平面

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:空間直角坐標(biāo)系O﹣xyz中,過(guò)點(diǎn)P(x0,y0,z0)且一個(gè)法向量為=(a,b,c)的平面α的方程為a(x﹣x0)+b(y﹣y0)+c(z﹣z0)=0;過(guò)點(diǎn)P(x0,y0,z0)且一個(gè)方向向量為=(u,v,w)(uvw≠0)的直線l的方程為,閱讀上面材料,并解決下面問(wèn)題:已知平面α的方程為x+2y﹣2z﹣4=0,直線l是兩平面3x﹣2y﹣7=0與2y﹣z+6=0的交線,則直線l與平面α所成角的大小為( 。

A. arcsinB. arcsin

C. arcsinD. arcsin

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次數(shù)學(xué)會(huì)議中,有五位教師來(lái)自三所學(xué)校,其中學(xué)校有位,學(xué)校有位,學(xué)校有位,F(xiàn)在五位老師排成一排照相,若要求來(lái)自同一學(xué)校的老師不相鄰,則共有_______種不同的站隊(duì)方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過(guò)點(diǎn)M(1,),過(guò)點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)AB.

1)求橢圓C的方程;

2)是否存在直線l,滿(mǎn)足?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)滿(mǎn)足,則稱(chēng)接近

1)若4接近0,求的取值范圍;

2)對(duì)于任意的兩個(gè)不等正數(shù),求證:接近;

3)若對(duì)于任意的非零實(shí)數(shù),實(shí)數(shù)接近,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(a∈R).

(1)若曲線y=f(x)在x=e處切線的斜率為﹣1,求此切線方程;

(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,求a的取值范圍,并證明:x1x2>x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將寬和長(zhǎng)都分別為x,的兩個(gè)矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來(lái)的兩個(gè)矩形的頂點(diǎn)都在同一個(gè)圓上,且兩矩形長(zhǎng)所在的直線互相垂直的圖形,

y關(guān)于x的函數(shù)解析式;

當(dāng)x,y取何值時(shí),該正十字形的外接圓面積最小,并求出其最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案