精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A、B、C所對的邊分別為a、b、c,且
(Ⅰ)求的值;
(Ⅱ)若,求bc的最大值.
【答案】分析:(Ⅰ)把所求的式子利用二倍角的余弦函數公式及三角形的內角和定理化簡后,得到一個關于cosA的關系式,把cosA的值代入即可求出值;
(Ⅱ)根據余弦定理表示出cosA,讓其等于,然后把等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191419544379749/SYS201310241914195443797015_DA/1.png">,利用基本不等式和a的值即可求出bc的最大值.
解答:解:(Ⅰ)
=
=
=
=;
(Ⅱ)根據余弦定理可知:

又∵,即bc≥2bc-3,
.當且僅當b=c=時,bc=,
故bc的最大值是
點評:此題考查學生靈活運用二倍角的余弦函數公式及余弦定理化簡求值,靈活運用基本不等式求函數的最值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案