已知:正方體ABCD-A1B1C1D1 ,AA1=2,E為棱CC1的中點.
(Ⅰ) 求證:B1D1⊥AE;
(Ⅱ) 求證:AC∥平面B1DE.

解:(Ⅰ)連接BD,則BD∥B1D1,
∵ABCD是正方形,∴AC⊥BD.
∵CE⊥平面ABCD,BD?平面ABCD,∴CE⊥BD.
又∵AC∩CE=C,∴BD⊥面ACE.---------------(3分)
∵AE?面ACE,∴BD⊥AE,
∴B1D1⊥AE.---(5分)
(Ⅱ)證明:取BB1的中點F,連接AF、CF、EF.
∵E、F是C1C、B1B的中點,
∴CE∥B1F且CE=B1F
∴四邊形B1FCE是平行四邊形,
∴CF∥B1E.
∵正方形BB1C1C中,E、F是CC、BB的中點,
∴EF∥BC且EF=BC
又∵BC∥AD且BC=AD,
∴EF∥AD且EF=AD.
∴四邊形ADEF是平行四邊形,可得AF∥ED,
∵AF∩CF=C,BE∩ED=E,
∴平面ACF∥平面B1DE. 又∵AC?平面ACF,
∴AC∥面B1DE.------(10分)
分析:(Ⅰ)連接BD,則BD∥B1D1.在ABCD是正方形中,AC⊥BD,結合CE⊥BD,可以證出BD⊥面ACE,從而得到BD⊥AE,利用平行線的性質得到B1D1⊥AE.
(II)取BB1的中點F,連接AF、CF、EF.可以證出四邊形B1FCE是平行四邊形,從而CF∥B1E;然后再證四邊形ADEF是平行四邊形,可得AF∥ED,結合面面平行的判定定理,得到平面ACF∥平面B1DE. 最后利用面面平行的性質,得到AC∥面B1DE.
點評:本題以正方體為平臺,考查證明了線面垂直和線面平行,著重考查了空間直線與平面平行的判定與性質和面面平行的判定與性質等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:正方體ABCD-A1B1C1D1,AA1=2,E為棱CC1的中點.
(1)求證:B1D1⊥AE;
(2)求證:AC∥平面B1DE;
(3)(文)求三棱錐A-BDE的體積.
(理)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點,試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在正方體ABCD-A1B1C1D1中,E、F分別是D1D、BD的中點,G在棱CD上,且CG=
14
CD.
(I)求證:EF⊥B1C;
(Ⅱ)求EF與C1G所成角的余弦值;
(Ⅲ)求二面角F-EG-C1的大。ㄓ梅慈呛瘮(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•河東區(qū)一模)已知:正方體ABCD-A1B1C1D1的棱長為1.
(Ⅰ)求棱AA1與平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大;
(Ⅲ)求四面體A1-BB1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位正方體ABCD-A1B1C1D1對棱BB1,DD1上有兩個動點E、F,BE=D1F,設EF與面AB1所成角為α,與面BC1所成角為β,則α+β的最大值為
 

查看答案和解析>>

同步練習冊答案