已知橢圓C:  
x2
a2
+
y2
b2
=1
(a>b>0)的上頂點(diǎn)坐標(biāo)為(0,
3
)
,離心率為
1
2
.(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)P為橢圓上一點(diǎn),A為橢圓左頂點(diǎn),F(xiàn)為橢圓右焦點(diǎn),求
PA
PF
的取值范圍.

精英家教網(wǎng)
(1)設(shè)橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,
由已知b=
3
, 
c
a
=
1
2
,
所以a=2, b=
3
, c=1
,
得橢圓的方程為
x2
4
+
y2
3
=1


(Ⅱ)設(shè)P(x,y),
又A(-2,0),F(xiàn)(1,0),則
PA
=(-2-x,-y),
PF
=(1-x,-y)

PA
PF
=(-2-x,-y)•(1-x,-y)=(x+2)(x-1)+y2

=x2+x-2+y2=
1
4
x2+x+1(-2≤x≤2)

當(dāng)x=0時(shí),取得最小值0,當(dāng)x=2時(shí),取得最大值4,
PA
PF
∈[0,4]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知離心率為
6
3
的橢圓C:
x2
a 2
+
y2
b2
=1
(a>b>0)經(jīng)過(guò)點(diǎn)P(
3
,1)

(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線l交橢圓C于M、N兩點(diǎn),若
OM
ON
=
4
6
3tan∠MON
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方向向量為
V
=(1,
3
)
的直線l過(guò)橢圓C:
x2
a 2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)以及點(diǎn)(0,-2
3
),直線l與橢圓C交于A、B兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為4
6

(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線m交橢圓于M、N兩點(diǎn),
OM
ON
=
4
6
3tan∠MON
≠0
(O坐標(biāo)原點(diǎn)),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知離心率為
6
3
的橢圓C:
x2
a 2
+
y2
b2
=1
(a>b>0)經(jīng)過(guò)點(diǎn)P(
3
,1)

(1)求橢圓C的方程;
(2)過(guò)左焦點(diǎn)F1且不與x軸垂直的直線l交橢圓C于M、N兩點(diǎn),若
OM
ON
=
4
6
3tan∠MON
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案