已知:等差數(shù)列滿足,則數(shù)列{}的公差d=(   

A.138              B.135              C.95               D.23

 

【答案】

C

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an滿足a1=1,n≥2時(shí),
an
an-1
=
2-3an
an-1+2

(1)求證:數(shù)列{
1
an
}
為等差數(shù)列;
(2)求{
3n
an
}
的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江杭州七校高二下期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為

由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),;

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證 

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:等差數(shù)列滿足,,則數(shù)列{}的公差d=

A.138        B.135        C.95      D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆湖南省長(zhǎng)沙市第一中學(xué)高三第四次月考理科數(shù)學(xué)試卷 題型:單選題

已知:等差數(shù)列滿足,,則數(shù)列{}的公差d=(   

A.138B.135C.95D.23

查看答案和解析>>

同步練習(xí)冊(cè)答案