已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n=1,2,3…),數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.

(1)

求數(shù)列{an},{bn}的通項an和bn;

(2)

設cn=an·bn,求數(shù)列{cn}的前n項和Tn,并求滿足Tn<167的最大正整數(shù)n.

答案:
解析:

(1)

…………2分

.

即數(shù)列{an}是等比數(shù)列.…………3分

即數(shù)列{bn}是等差數(shù)列,又

(2)

……9分

因此:……10分

即:

當n=5時,

故滿足條件Tn<167的最大正整數(shù)n為4……………………14分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案