已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3,n∈Z},對(duì)于任意a∈A,b∈B,是否一定有a+b=m且m∈M?
考點(diǎn):元素與集合關(guān)系的判斷
專(zhuān)題:集合
分析:根據(jù)已知條件知:若a∈A,b∈B,則一定存在n1,n2∈z,使得a=3n1+1,b=3n2+1,所以a+b=3(n1+n2)+3.而集合M的元素需滿(mǎn)足:x=6n+3=3•2n+3,顯然n1+n2不一定等于2n,所以不一定有a+b=m且m∈M.
解答: 解:∵a∈A,b∈B;2
∴分別存在n1,n2∈z使得:
a=3n1+1,b=3n2+2;
∴a+b=3(n1+n2)+3;
而集合M中的條件是:x=6n+3=3•2n+3;
∴要使a+b∈M,則n1+n2=2n,這顯然不一定;
∴不一定有a+b=m且m∈M.
點(diǎn)評(píng):本題考查描述法表示集合,元素與集合的關(guān)系,以及描述法表示一個(gè)集合時(shí),如何判斷一個(gè)元素是否是這個(gè)集合的元素.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑為5、圓心角為
5
的扇形,在這個(gè)圓錐中內(nèi)接一個(gè)高為x的圓柱.
(1)求圓錐的體積;
(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果點(diǎn)P在平面區(qū)域 
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,點(diǎn)Q在曲線(xiàn)x2+(y+2)2=1上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若直線(xiàn)l在兩坐標(biāo)軸上的截距相等,求直線(xiàn)l的方程;
(2)若直線(xiàn)l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an=
n+1
2
1
S1
+
1
S2
+…+
1
Sn
)(n∈N*
①求a1,a2,a3
②求數(shù)列{an}的通項(xiàng)公式an;
③若數(shù)列{bn}滿(mǎn)足b1=1,bn=
1
bn-1
+
1
an
(n≥2),求證:bn2<2+2(
1
2
b1+
1
3
b2+
1
4
b3+…+
1
n
bn-1)(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A={x|x2+x+a=0,B={x|x<0},已知A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)在區(qū)間(a,b)的零點(diǎn)按精確度為ε求出的結(jié)果與精確到ε求出的結(jié)果可以相等,則稱(chēng)函數(shù)y=f(x)在區(qū)間(a,b)的零點(diǎn)為“和諧零點(diǎn)”.試判斷函數(shù)f(x)=x3+x2-2x-2在區(qū)間(1,1.5)上,按ε=0.1用二分法逐次計(jì)算,求出的零點(diǎn)是否為“和諧零點(diǎn)”.(參考數(shù)據(jù)f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知am-1+am+1-am2=0,S2m-1=38,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案