【題目】在一個(gè)半圓中有兩個(gè)互切的內(nèi)切半圓,由三個(gè)半圓弧圍成曲邊三角形,作兩個(gè)內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來(lái)切割皮料的刀子,他稱(chēng)此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為(

A.B.

C.D.

【答案】B

【解析】

設(shè),則,,建立平面直角坐標(biāo)系,分別求出各點(diǎn)坐標(biāo),,,,,設(shè)兩個(gè)小圓圓心,,則根據(jù)圓與圓內(nèi)切,解得.同理,得,由圓與圓內(nèi)切,得,于是阿基米德“皮匠刀定理”得證.再對(duì)面積求比即可.

解:設(shè),則,,建立如圖所示的坐標(biāo)系,

,,,,設(shè),,

,得,所以,

由圓與圓內(nèi)切,得,解得.

同理,得,

由圓與圓內(nèi)切,得,解得,

于是阿基米德“皮匠刀定理”得證.

,

所以.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),直線與曲線交于,兩點(diǎn).

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;

(2)若,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)其焦點(diǎn)的直線與拋物線相交于兩點(diǎn),滿足.

1)求拋物線的方程;

2)已知點(diǎn)的坐標(biāo)為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為2的正方形上有一點(diǎn),記的最大值為,最小值為,則

A.8B.6C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知直線與圓O:相切.

(1)直線l過(guò)點(diǎn)(2,1)且截圓O所得的弦長(zhǎng)為,求直線l的方程;

(2)已知直線y=3與圓O交于A,B兩點(diǎn),P是圓上異于A,B的任意一點(diǎn),且直線AP,BPy軸相交于M,N點(diǎn).判斷點(diǎn)M、N的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,,是曲線段是參數(shù),)的左、右端點(diǎn),上異于,的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為.

1)建立適當(dāng)?shù)臉O坐標(biāo)系,寫(xiě)出點(diǎn)軌跡的極坐標(biāo)方程;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域,部分對(duì)應(yīng)值如表,的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的結(jié)論正確的是(

0

4

5

1

2

2

1

A.函數(shù)的極大值點(diǎn)有2個(gè)

B.函數(shù)上是減函數(shù)

C.時(shí),的最大值是2,那么的最大值為4

D.當(dāng)時(shí),函數(shù)4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:過(guò)點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過(guò)原點(diǎn)的直線與橢圓C交于P、Q兩點(diǎn),且在直線上存在點(diǎn)M,使得為等邊三角形,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,,是曲線段是參數(shù),)的左、右端點(diǎn),上異于,的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為.

1)建立適當(dāng)?shù)臉O坐標(biāo)系,寫(xiě)出點(diǎn)軌跡的極坐標(biāo)方程;

2)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案