13.函數(shù)f(x)=$\frac{1}{\sqrt{1-x}}$+$\sqrt{x+3}$-1的定義域是(  )
A.(-1,3]B.(-1,3)C.[-3,1)D.[-3,1]

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不等于0,聯(lián)立不等式組,求解即可得答案.

解答 解:由$\left\{\begin{array}{l}{1-x>0}\\{x+3≥0}\end{array}\right.$,
解得-3≤x<1.
∴函數(shù)f(x)=$\frac{1}{\sqrt{1-x}}$+$\sqrt{x+3}$-1的定義域是:[-3,1).
故選:C.

點評 本題考查了函數(shù)的定義域及其求法,考查了不等式的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,x≥0}\\{-{x}^{2}-1,x<0}\end{array}\right.$,若f(x)≤kx,則k的范圍為( 。
A.[1,2]B.[$\frac{1}{2}$,2]C.[$\frac{1}{2}$,1]D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.實數(shù)2,b,a依次成等比數(shù)列,則方程$a{x^2}+bx+\frac{1}{3}=0$的實根個數(shù)為( 。
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ln(x-1)-k(x-1)+1(k∈R).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若f(x)≤0恒成立,試確定實數(shù)k的取值范圍;
(III)證明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{{n({n-1})}}{4}({N∈{N_+}且n≥2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知直線l過點(1,0)且傾斜角為α,在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線M的方程為ρsin2θ+4cosθ=0.
(1)寫出曲線M的直角坐標方程及直線l的參數(shù)方程;
(2)若直線l與曲線M只有一個公共點,求傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)計算:$\sqrt{9}-\sqrt{2}×\root{3}{2}×\root{6}{2}$
(2)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.條件p:|x+1|>2,條件q:x>2,則¬p是¬q的( 。
A.充分非必要條件B.必要不充分條
C.充要條件D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設A={a},則下列各式中正確的是(  )
A.0∈AB.a∈AC.a⊆AD.a=A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.用斜二測畫法畫一個水平放置的平面圖形的直觀圖為如右圖所示的一個正方形,則原來的圖形為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案