設(shè)拋物線的方程為,為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.
(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;
(2)求證:直線恒過(guò)定點(diǎn);
(3)當(dāng)變化時(shí),試探究直線上是否存在點(diǎn),使為直角三角形,若存在,有幾個(gè)這樣的點(diǎn),若不存在,說(shuō)明理由.
(本小題滿分14分)
解:(1)當(dāng)的坐標(biāo)為時(shí),設(shè)過(guò)點(diǎn)的切線方程為,代入,整理得,
令,解得,
代入方程得,故得, .................2分
因?yàn)?sub>到的中點(diǎn)的距離為,
從而過(guò)三點(diǎn)的圓的方程為.
易知此圓與直線相切. ..................4分
(2)證法一:設(shè)切點(diǎn)分別為,,過(guò)拋物線上點(diǎn)的切線方程為,代入,整理得
,又因?yàn)?sub>,所以................5分
從而過(guò)拋物線上點(diǎn)的切線方程為即
又切線過(guò)點(diǎn),所以得 ① 即
同理可得過(guò)點(diǎn)的切線為,
又切線過(guò)點(diǎn),所以得 ② 即.................6分
即點(diǎn),均滿足即,故直線的方程為 .................7分
又為直線上任意一點(diǎn),故對(duì)任意成立,所以,從而直線恒過(guò)定點(diǎn) ..................8分
證法二:設(shè)過(guò)的拋物線的切線方程為,代入,消去,得
即:.................5分
從而,此時(shí),
所以切點(diǎn)的坐標(biāo)分別為,.................6分
因?yàn)?sub>,,
,
所以的中點(diǎn)坐標(biāo)為
故直線的方程為,即...............7分
又為直線上任意一點(diǎn),故對(duì)任意成立,所以,從而直線恒過(guò)定點(diǎn) ..................8分
證法三:由已知得,求導(dǎo)得,切點(diǎn)分別為,,故過(guò)點(diǎn)的切線斜率為,從而切線方程為即
又切線過(guò)點(diǎn),所以得 ① 即
同理可得過(guò)點(diǎn)的切線為,
又切線過(guò)點(diǎn),所以得 ②
即.................6分
即點(diǎn),均滿足即,故直線的方程為 .................7分
又為直線上任意一點(diǎn),故對(duì)任意成立,所以,從而直線恒過(guò)定點(diǎn) ..................8分
(3)解法一:由(2)中①②兩式知是方程的兩實(shí)根,故有
(*)
將,,代入上(*)式得
∴
, .................9分
①當(dāng)時(shí),,直線上任意一點(diǎn)均有,為直角三角形; .................10分
②當(dāng)時(shí),,,不可能為直角三角形;
.................11分
③當(dāng)時(shí),,.
因?yàn)?sub>,,
所以
若,則,整理得,
又因?yàn)?sub>,所以,
因?yàn)榉匠?sub>有解的充要條件是.
所以當(dāng)時(shí),有或,為直角三角形..............13分
綜上所述,當(dāng)時(shí),直線上任意一點(diǎn),使為直角三角形,當(dāng)時(shí),直線上存在兩點(diǎn),使為直角三角形;當(dāng)或時(shí),不是直角三角形.
.................14分
解法二:由(2)知,且是方程的兩實(shí)根,即,從而,
所以
當(dāng)時(shí),即時(shí),直線上任意一點(diǎn)均有,為直角三角形; .................10分
當(dāng)時(shí),即時(shí),與不垂直。
因?yàn)?sub>,,
所以
若,則,整理得,
又因?yàn)?sub>,所以,
因?yàn)榉匠?sub>有解的充要條件是.
所以當(dāng)時(shí),有或,為直角三角形..............13分
綜上所述,當(dāng)時(shí),直線上任意一點(diǎn),使為直角三角形,當(dāng)時(shí),直線上存在兩點(diǎn),使為直角三角形;當(dāng)或時(shí),不是直角三角形.
.................14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省韶關(guān)市高三第一次調(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題
.(本小題滿分14分)設(shè)拋物線的方程為,為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.
(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;
(2)求證:直線恒過(guò)定點(diǎn);
(3)當(dāng)變化時(shí),試探究直線上是否存在點(diǎn),使為直角三角形,若存在,有幾個(gè)這樣的點(diǎn),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省韶關(guān)市高三第一次調(diào)研考試文科數(shù)學(xué) 題型:解答題
(本題滿分14分)設(shè)拋物線的方程為,為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.
(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;
(2)求證:直線恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東韶關(guān)市2011-2012學(xué)年高三第一次調(diào)研考試數(shù)學(xué)文科試題 題型:解答題
設(shè)拋物線的方程為,為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.
(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;
(2)求證:直線恒過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com