(本題滿分14分)設(shè)拋物線的方程為,為直線上任意一點(diǎn),過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

(1)當(dāng)的坐標(biāo)為時,求過三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;

(2)求證:直線恒過定點(diǎn).

 

 

【答案】

解:(1)當(dāng)的坐標(biāo)為時,設(shè)過點(diǎn)的切線方程為,代入,整理得,

,解得,

代入方程得,故得,       .................2分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052501211698437280/SYS201205250124057968424048_DA.files/image001.png">到的中點(diǎn)的距離為

從而過三點(diǎn)的圓的方程為

易知此圓與直線相切.              ..................4分

(2)證法一:設(shè)切點(diǎn)分別為,,過拋物線上點(diǎn)的切線方程為,代入,整理得    

,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052501211698437280/SYS201205250124057968424048_DA.files/image021.png">,所以................6分

從而過拋物線上點(diǎn)的切線方程為

又切線過點(diǎn),所以得    ①   即....8分

同理可得過點(diǎn)的切線為,

又切線過點(diǎn),所以得    ②  ....10分

.................6分

即點(diǎn),均滿足,故直線的方程為     .........................................12分

為直線上任意一點(diǎn),故對任意成立,所以,從而直線恒過定點(diǎn)       ..................14分

證法二:設(shè)過的拋物線的切線方程為,代入,消去,得    

即:.................6分

從而,此時

所以切點(diǎn)的坐標(biāo)分別為,.................8分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052501211698437280/SYS201205250124057968424048_DA.files/image051.png">,

所以的中點(diǎn)坐標(biāo)為....................................11分

故直線的方程為,即...........12分

為直線上任意一點(diǎn),故對任意成立,所以,從而直線恒過定點(diǎn)       ..................14分

證法三:由已知得,求導(dǎo)得,切點(diǎn)分別為,,故過點(diǎn)的切線斜率為,從而切線方程為

...............................................................7分

又切線過點(diǎn),所以得    ①   即........8分

同理可得過點(diǎn)的切線為,

又切線過點(diǎn),所以得    ②  即........10分

即點(diǎn),均滿足,故直線的方程為                                  .................12分

為直線上任意一點(diǎn),故對任意成立,所以,從而直線恒過定點(diǎn)       ..................14分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

設(shè)函數(shù)。

(1)若,過兩點(diǎn)的中點(diǎn)作軸的垂線交曲線于點(diǎn),求證:曲線在點(diǎn)處的切線過點(diǎn);

(2)若,當(dāng)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求在[—1,2]上的最小值; (3)當(dāng)時,用數(shù)學(xué)歸納法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011——2012學(xué)年湖北省洪湖二中高三八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
F2,直線過橢圓的一個焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長為
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三寒假作業(yè)數(shù)學(xué)卷三 題型:解答題

(本題滿分14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

 (I)證明:函數(shù)是集合M中的元素;

 (II)證明:函數(shù)具有下面的性質(zhì):對于任意,都存在,使得等式成立。 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

本題滿分14分)

設(shè)函數(shù).

(1)若,求函數(shù)的極值;

(2)若,試確定的單調(diào)性;

(3)記,且上的最大值為M,證明:

 

 

查看答案和解析>>

同步練習(xí)冊答案